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Abstract: For the reasonable and effective collection of Ophiocordyceps sinensis, a new method of on-site identification was 

attempted using a portable multispectral imaging (MSI) technique.  Three dimensional (3D) data-cubes of representative 

Ophiocordyceps sinensis and weeds samples were acquired and pre-processed with standard normal variate transformation 

(SNV).  Principal component analysis (PCA) and simulated annealing particle swarm optimisation (SAPSO) algorithms were 

used to extract characteristic images and develop the support vector classification (SVC) models.  Results show that the fused 

feature model of SAPSO-SVC has the best performance, resulting in a recognition accuracy of the prediction set of 96.30%.  

Moreover, on-site distribution map of Ophiocordyceps sinensis and weeds was created using the spectral feature model of 

SAPSO-SVC, and the target could be easily identified from the distribution map.  This work demonstrates the potential for 

on-site identification of Ophiocordyceps sinensis in the Qinghai–Tibet Plateau using a portable MSI technique combined with 

the SAPSO-SVC algorithm. 
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1  Introduction

 

As a valuable wildlife resource with the dual-purpose of 

medicine and nutrition, Ophiocordyceps sinensis has strict 

requirements for its parasitism and growth environment, leading to 

its short supply in the high-end market.  However, because of its 

small size, dark colour and wide distribution, the traditional manual 

search method has the disadvantages of high labour intensity and 

low efficiency in the process of collecting Ophiocordyceps sinensis.  

Therefore, developing a rapid and on-site identification technology 

is of major importance for the ecologically friendly and efficient 

excavation of Ophiocordyceps sinensis resources and to ensure 

sustainable use. 

In recent, digital imaging technologies have been widely used 

in the classification of farm products, monitoring of crop diseases 

and insect pests, and other aspects of agricultural production based 

on the external physical features (e.g. colour, marbling and texture) 

without considering spectral fingerprints[1-4].  Similarly, many 

near-infrared spectroscopic studies have been reported to analyze 

the internal chemical or biological properties based on a small 

rounded region of the target sample[5-7].  As a fusion of imaging 

and spectroscopy[8-12], multispectral imaging (MSI) integrates both 

techniques in one configuration and can provide both spatial and 
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spectral information for each pixel over the required wavelength 

range, thereby facilitating the fast and accurate identification of 

Ophiocordyceps sinensis.   

Because of the heavy data-cube of the acquired original 

multispectral images, there may exist non-informative waveband 

images.  Moreover, the unique external texture features of 

Ophiocordyceps sinensis are mainly influenced by its internal 

functional composition.  Herein, principal component analysis 

(PCA)[13] and simulated annealing particle swarm optimisation 

(SAPSO)[14] were used to extract the characteristic images from 

two aspects of image and spectral analysis, and a more robust 

classification model may be developed to accurately identify 

Ophiocordyceps sinensis using the simplified three dimensional 

data-cube[15].   

In this work, MSI was applied to fast identify and on-site 

visualize Ophiocordyceps sinensis.  The specific objectives were 

to (1) extract and pre-process the spectra and images in regions of 

interest (ROIs) of Ophiocordyceps sinensis and representative 

weeds; (2) extract the characteristic images using PCA and SAPSO 

and obtain the texture features of characteristic images using 

Gray-level Co-occurrence Matrix (GLCM); (3) develop support 

vector classification (SVC) models and create an on-site 

classification distribution map. 

2  Materials and methods 

2.1  Sample collection and preparation 

A total of 106 representative samples, including 24 

Ophiocordyceps sinensis and 82 weeds from 11 categories, were 

collected from the main area of Ophiocordyceps sinensis 

production at 4200-4600 m above sea level in Nyingchi, Tibet 

Autonomous Region, China.  

2.2  Multispectral image acquisition and processing  

The developed MSI configuration consisted of an imaging  
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spectrometer (ImSpector, V10E-QE, Spectral Imaging Ltd., 

Finland) in the spectral range of 465-630 nm with a digital camera 

(CMV2000, Imec, Belgium), and computer installed with spectral 

data-cube acquisition software. 

To maximize the information of Ophiocordyceps sinensis that 

could be obtained under suitable light conditions, the lens 

orientation was adjusted to approximately 30° downward in the 

horizontal direction.  The distance between the lens and sample 

was adjusted to approximately 15 cm to ensure an appropriate 

image size.  The system was then operated with a 3 ms exposure 

time to generate the multispectral image. 

2.3  Regions of interest 

The Ophiocordyceps sinensis stroma mainly consists of the 

pommel, fertile trunk and an infertile tip.  Because of the more 

evident texture features and larger area weight of the fertile part, it 

was extracted as the ROIs of Ophiocordyceps sinensis with a size 

of 25 × 25 pixels.  Similarly, the ROIs of different weed samples 

were determined by their characteristic areas.  The averaged 

spectrum for each ROI was regarded as the representative spectrum 

of the Ophiocordyceps sinensis or weed sample.  

2.4  Data process and analysis 

Based on the acquired spectra of Ophiocordyceps sinensis and 

representative weed samples, the dataset was initially divided into 

the calibration set and prediction set using the concentration 

gradient method.  Because of the influence of the uneven 

thickness of the tested samples, the spectral noise of light scattering 

needed to be removed using the preprocessing method of standard 

normal variate transformation (SNV).  The characteristic images 

were then extracted from the denoised dataset using SAPSO and 

PCA, and its external texture features were analysed based on the 

GLCM method.  SVC models were finally developed using the 

characteristic information, and it was also used to establish the 

On-site classification distribution map of Ophiocordyceps 

sinensis[16].  A high recognition accuracy of the prediction set 

signifies a robust prediction performance.  

3  Results and discussion 

3.1  Extraction of characteristic images 

Prior to the extraction of image features, resampling was 

implemented to obtain the three dimensional data-cube for the 

ROIs.  PCA was applied to this data-cube for image dimensional 

reduction, and PC1 had a variance contribution rate of more than 

80%.  Additionally, it was observed that the larger weights in the 

projection coefficient matrix were mainly distributed in the 

wavelengths of 490.25 nm, 507.29 nm, 569.08 nm and 605.09 nm.  

These results were expected because two further wavelengths 

located at approximately 490.25 nm and 507.29 nm were the 

absorption peaks related to polysaccharide and α-tocopherol[16-22]. 

Similarly, SAPSO was used to extract four feature variables 

located at the wavelengths of 490.25 nm, 507.29 nm, 545.02 nm 

and 626.90 nm, as presented in Figure 1.  The feature variables at 

wavelengths 490.25 nm and 507.29 nm were both obtained by PCA 

and SAPSO.  Moreover, two wavelengths located at 

approximately 626.90 nm and 545.02 nm were obtained by SAPSO, 

which were the absorption peaks of polysaccharide and xanthine 

oxidase, respectively[19-21,23].  The results showed that the 

characteristic images extracted by PCA and SAPSO both contained 

the main feature information of Ophiocordyceps sinensis. 

 
Figure 1  Extraction process of Ophiocordyceps sinensis characteristic images 

 

3.2  Texture feature extraction of characteristic images 

Based on the acquired characteristic images of Ophiocordyceps 

sinensis, texture feature parameters of angular second moment 

(ASM), contrast (CON), correlation (COR), inverse difference 

moment (IDM) and entropy (ENT) were extracted using GLCM 

from four directions of 0°, 45°, 90° and 135°, as shown in Figure 2. 

In comparison with the other three directions, the dispersion 

and overall levels of ASM, COR and IDM in the 0° direction were 

high, while the values of CON and ENT were low.  This indicates 

that the texture of the fertile trunk in the horizontal direction was 

more regular, fine and clearly visible.  Furthermore, in all four 

directions, the CON values at wavelengths 545.02 nm and   

626.90 nm acquired using SAPSO were both larger than those at 

wavelengths 569.08 nm and 605.09 nm obtained using PCA.  This 

demonstrates that the characteristic images extracted using SAPSO 

had more distinct grooves. 

3.3  Model prediction 

The SVC models of Ophiocordyceps sinensis and weeds were 

developed based on the simplified characteristic images.  The 

model results are shown in Table 1. 

The characteristic images obtained by PCA were initially used 

to develop the PCA-SVC models, resulting in recognition 

accuracies of 88.89%, 85.19% and 92.60%, while the similar 

characteristic images obtained by SAPSO were then used to 

develop the SAPSO-SVC models, resulting in recognition 

accuracies of 92.59%, 92.59% and 96.30%.  Results showed that 
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the SAPSO-SVC models had better performances than those of 

PCA-SVC models.  This was expected since the SAPSO 

algorithm could extract more texture features and dominant spectra 

related to polysaccharide, α-tocopherol and xanthine oxidase of 

Ophiocordyceps sinensis[24,25].  Furthermore, the fused feature 

model had the best performance in the three SAPSO-SVC models, 

and it can be applied for the on-site identification of 

Ophiocordyceps sinensis. 

 
a. GLCM-ASM  b. GLCM-CON 

 
c. GLCM-COR  d. GLCM-IDM 

 
e. GLCM-ENT 

Note: A, B, C and D are the four feature spectra of 490.25 nm, 507.29 nm, 569.08 nm and 605.09 nm, respectively, of which, C, D are acquired 

using PCA; A, B are acquired using PCA and SAPSO; E and F are the feature spectra of 545.02 nm and 626.90 nm, respectively, acquired using 

SAPSO; and a, b, c and d are the four directions of 0°, 45°, 90° and 135°, respectively. 

Figure 2  Texture feature statistics of simplified characteristic images 
 

Table 1  Comparison of SVC model results 

Note: c signifies penalty parameter; g signifies kernel parameter.  79 samples were used as calibration set, and 27 samples were used as prediction set. 

Data Models 

Parameters Accuracy 

c g Calibration set Cross-validation set Prediction set 

Spectra 
PCA-SVC 63.6753 93.2611 93.67% 77.22% 88.89% 

SAPSO-SVC 67.7858 100 98.73% 84.81% 92.59% 

Texture 
PCA-SVC 85.4048 65.0283 86.08% 77.22% 85.19% 

SAPSO-SVC 12.2453 0.49125 100% 86.08% 92.59% 

Fusion 
PCA-SVC 7.5589 0.0647 98.73% 78.48% 92.59% 

SAPSO-SVC 22.943 0.29409 100% 92.41% 96.30% 
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3.4  On-site visualization of Ophiocordyceps sinensis and weeds 

Because of the incomputability of texture features on each 

single pixel, the on-site classification distribution map of 

Ophiocordyceps sinensis was therefore created based on the 

spectral feature model of SAPSO-SVC.  As shown in Figure 3, 

pixels marked by blue and yellow represent the portions of 

Ophiocordyceps sinensis and weeds, respectively.  The densely 

distributed blue pixels could automatically generate the rod-shaped 

images of Ophiocordyceps sinensis stroma, and its precise position 

could be intuitively identified from the complex background.  

This indicates that the distribution map could be used for on-site 

identification of Ophiocordyceps sinensis.  However, there 

remained a large amount of dispersed blue 'noise points' on the map.  

This may be because some representative weed samples in the main 

producing areas of Ophiocordyceps sinensis were neglected 

because of the complexity of the growth environment. 

 
a. The first classification distribution map b. The second classification distribution map   c. The third classification distribution map 

 

d. The fourth classification distribution map e. The fifth classification distribution map f. The sixth classification distribution map 

 
g. The seventh classification distribution map h. The eighth classification distribution map i. The ninth classification distribution map 

 
j. The tenth classification distribution map 

Figure 3  On-site classification distribution map of ten Ophiocordyceps sinensis 
 

4  Conclusions  

To avoid the disadvantages of high labour intensity and low 

efficiency in the process of collecting Ophiocordyceps sinensis, 

MSI was used to fast identify Ophiocordyceps sinensis from 

complex background.  A comparison between the models 

developed by characteristic images indicated that the fused feature 

model of SAPSO-SVC had the best performance, resulting in a 

recognition accuracy of 96.30%.  Furthermore, the on-site 

classification distribution map of Ophiocordyceps sinensis was 
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created based on the spectral feature model of SAPSO-SVC.  

Results showed that the MSI technique combined with the 

SAPSO-SVC algorithm could quickly find out Ophiocordyceps 

sinensis. 
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