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Abstract: In order to solve the problem of low recognition rates of weeds by a single feature, a method was proposed in this 
study to identify weeds in Asparagus (Asparagus officinalis L.) field using multi-feature fusion and backpropagation neural 
network (BPNN).  A total of 382 images of weeds competing with asparagus growth were collected, including 135 of Cirsium 
arvense (L.) Scop., 138 of Conyza sumatrensis (Retz.) E. Walker, and 109 of Calystegia hederacea Wall.  The grayscale 
images were extracted from the RGB images of weeds using the 2G-R-B factor.  Threshold segmentation of the grayscale 
image of weeds was applied using Otsu method.  Then the internal holes of the leaves were filled through the expansion and 
corrosion morphological operations, and other interference targets were removed to obtain the binary image.  The foreground 
image was obtained by masking the binary image and the RGB image.  Then, the color moment algorithm was used to extract 
weeds color feature, the gray level co-occurrence matrix and the Local Binary Pattern (LBP) algorithm was used to extract 
weeds texture features, and seven Hu invariant moment features and the roundness and slenderness ratio of weeds were 
extracted as their shape features.  According to the shape, color, texture, and fusion features of the test samples, a weed 
identification model was built.  The test results showed that the recognition rate of Cirsium arvense (L.) Scop., Calystegia 
hederacea Wall. and Conyza sumatrensis (Retz.) E. Walker were 82.72% (color feature), 72.41% (shape feature), 86.73% 
(texture feature) and 93.51% (fusion feature), respectively.  Therefore, this method can provide a reference for the study of 
weeds identification in the asparagus field. 
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1  Introduction  

Asparagus (Asparagus Officinalis L.), a perennial herb, is 
originated from the eastern Mediterranean and Asia Minor and has 
been cultivated for more than 2000 years, with the reputation of 
"the king of vegetables" in the international market.  At present, 
asparagus is grown in more than sixty countries around the world, 
including the United States, Italy, Netherlands, Canada, Germany, 
and other countries.  Its health benefits and biological functions 
have attracted increasing interest from both public and academia[1,2].  
Currently, production, scientific research & development of 
Asparagus have extended from the developed to developing 
countries, and China is the largest country in cultivation and export 
of asparagus which accounts for over 90% of the global planting 
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area of Asparagus[3,4].  However, in the growth of Asparagus, 
weeds play a significant role in limiting its crop productivity.  
They reduce crop yields by competition for resources and 
inhibition from allelopathic compounds[5-8].  Therefore, it is 
essential to explore effective weed identification strategies to 
ensure high crop yield.  

Nowadays, the most common way of removing weeds is by 
spraying the herbicide uniformly all over the farmland.  The areas 
without weeds are also sprayed, which increases the risk of 
contamination of crops, humans, animals, and water resources[9].  
Herbicide-based control methods are playing a major role in weed 
control[10,11].  However, excessive use of herbicides can easily 
cause environmental pollution.  These challenges emerge from a 
lack of attention on how weeds interact with the 
agroecosystem[12,13].  Machine vision technology has been 
suggested in precision agriculture for weed control[14].  This 
technique enables herbicides to be only sprayed at the exact spots 
needed.  Thus, the effective identification of weeds is the 
foundation in precise control of weeds[15].  In order to solve this 
problem, the multi-feature fusion method based on machine vision 
can be used to identify weeds and spray them with pesticides[16].  

Weed identification is mainly realized using machine vision 
technology via extracting their texture, color, and shape 
features[17-19].  The shape feature is extracted from a normalized 
description of the outline, whereas the texture and margin feature 
often use histogram accumulation of the leaf species.  Scientists 
attempted to use different classifiers with different leaf features to 
solve it.  Zhang et al.[20,21] evaluated ten common classifiers: 
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k-Nearest Neighbors (KNN), support vector machine (SVM), 
nu-SVM, decision tree, random forest, naïve Bayes, linear 
discriminant analysis (LDA), logistic regression, quadratic 
discriminant analysis (QDA), and sparse representation in leaf 
species classification with different leaf features such as shape, 
texture, and margin.  Sajad et al.[22] identified potato plants and 
three different kinds of weeds.  By applying the image processing 
technique, 3459 samples were extracted, trained, and tested using 
neural network classifiers.  One hundred twenty-six color features 
and sixty texture features were extracted from each sample.  The 
experimental results showed that the proposed system achieved an 
excellent identification accuracy of 98.38%, requiring less than 0.8 
s of execution on an average PC.  Radhika et al.[23] used texture 
features extracted from Laws' texture masks for discrimination of 
carrot crops and weeds in digital images.  A total of seventy 
texture features were extracted.  The dimensionality reduction 
technique was used to get the optimal features.  These features 
were used to train the Random Forest classifier.  The results and 
observations from the experiment showed that the classifier 
achieved above 94% accuracy.  Gai et al.[24] investigated fusion of 
color images and depth images.  The results showed the fusion of 
color and depth was proved beneficial to the segmentation of crop 
plants from the background, which improved the average 
segmentation success rates from 87.2% (depth-based) and 76.4% 
(color-based) to 96.6% for broccoli, and from 74.2% (depth-based) 
and 81.2% (color-based) to 92.4% for lettuce, respectively.  
Farooq et al.[25] improved the separability of weeds by extracting 
the strength, texture, and shape characteristics of different 
categories of weeds.  Dadashzadeh et al.[26] identified the 
discrimination of the rice and weeds, with a total of 302 color, 
shape, and texture features.  Tang et al.[27] took the soybean 
seedlings and their associated weeds as the research object, and 
constructed a weed identification model based on K-means feature 
learning and combined with CNN.  The experimental results have 
shown that this method with K-means pre-training achieved 
92.89% accuracy, beyond 1.82% than CNN with random 
initialization and 6.01% than two layers network without 
fine-tuning.  

The row spacing of asparagus planting is 1.2-1.5 m, and the 
plant spacing is 25-30 cm.  It is easy to breed weeds between the 
lines, mainly including Chenopodium album L., Calystegia 
hederacea Wall., Cirsium arvense (L.) Scop., Conyza sumatrensis 
(Retz.) E. Walker, Digitaria sanguinalis (L.) Scop., Echinochloa 
crusgalli (L.) Beauv. and Setaria viridis (L.) Beauv., etc. Cirsium 
arvense (L.) Scop., Calystegia hederacea Wall. and Conyza 
sumatrensis (Retz.) E. Walker are perennial weeds, and are spread 
by seeds.  They can spread quickly in open fields and have strong 
adaptability to the environment.  The planting conditions of 
asparagus provide a favorable living space for these weeds, and the 
pesticides sprayed when planting asparagus is mostly for annual 
weeds, which are not effective for perennial weeds.  The existing 
methods are based on one or two kinds of the three distinct 
characteristics in leaf images, including leaf contours, textures, and 
veins, which limits their recognition performance and scope of 
application[28].  Multi-feature fusion can help distinguish weeds, 
crops, and backgrounds, which improves the identification 
accuracy of weeds[29,30]. 

Therefore, the objective of this study was to classify Cirsium 
arvense (L.) Scop., Calystegia hederacea Wall. and Conyza 
sumatrensis (Retz.) E. Walker.  First of all, the color moment 
algorithm was used to extract weeds color features, the gray level 

co-occurrence matrix (GLCM) and the Local Binary Pattern (LBP) 
algorithm were used to extract weeds texture features, seven Hu 
invariant moment features and the roundness and slenderness 
ratio of weeds were extracted as their shape features.  Then, a 
method based on multi-feature fusion and backpropagation neural 
network (BPNN) was proposed to identify weeds in asparagus 
field.  

2  Materials and methods 

2.1  Image acquisition and pre-processing 
2.1.1  Image acquisition 

In this study, the experimental images were taken from the 
asparagus base in Shangcai County, Henan Province, China.  The 
county is located in the region of 114°06′E-114°42′E and 
33°04′N-33°25′N.  The county has a flat terrain, deep soil layers, 
a warm temperate monsoon humid climate, abundant rainfall 
(average annual rainfall of 870.7 mm), moderate light (average 
yearly sunshine duration of 2089 h), long frost-free period (average 
frost-free period of 225 d), and distinct seasons (average annual 
temperature 14.7°C), which is suitable for asparagus cultivation.  
Experimental images were taken from March 20 to April 18, 2020.  
In order to fully consider the weather conditions of natural scenes, 
images were collected on sunny and cloudy days, respectively.  In 
order to make the acquired images more representative, the 
overhead shooting method was adopted, and the shooting distance 
was 20-40 cm from the weeds.  The acquisition equipment is 
Huawei nova5 Pro smartphone, the rear camera resolution of the 
mobile phone is 48 million pixels.  A total of 382 images of 
weeds competing with asparagus growth were collected, including 
135 images of Cirsium arvense (L.) Scop., 138 images of Conyza 
sumatrensis (Retz.) E. Walker, and 109 images of Calystegia 
hederacea Wall.  These images were used in the training and 
testing of the weeds identification model.  The experimental 
sample images are shown in Figure 1. 

 
1. Cirsium arvense (L.) Scop.  2. Conyza sumatrensis (Retz.) E. Walker   
3. Calystegia hederacea Wall.  4. Asparagus officinalis L. 

Figure 1  Weeds images in the asparagus filed 
2.1.2  Image pre-processing 

Images were collected in the natural environment of the field.  
The background and lighting were different during image capture.  
The background includes dirt, shadows, dried weeds, and dried 
Asparagus stalks.  Light conditions include direct sunlight and 
oblique radiation.  Therefore, in order to highlight the green 
features of weeds, RGB image background should be removed.  
Equation (1) was used to convert RGB image (as shown in Figures 
2a, 3a, and 4a) and obtain their grayscale image (as shown in 
Figures 2b, 3b, and 4b).  In Equation (1), CF(x, y) is the gray 
value of the pixel coordinate (x, y), and R, G, and B represent the 
red, green, and blue color components of the pixel, respectively.  
Threshold segmentation of the grayscale image of weeds was 
applied using Otsu method.  Then the internal holes of the leaves 
were filled through the expansion and corrosion morphological 
operations, and other interference targets were removed to obtain 
the binary images (as shown in Figures 2c, 3c, and 4c).  The 
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foreground images were obtained by masking the binary image and 
the RGB image.  The results are shown in Figures 2d, 3d, and 4d. 

0 2G R B < 0
CF( , ) = 2G R B Others

255 2G R B > 255
x y

− −⎧
⎪ − −⎨
⎪ − −⎩

       (1) 

 

 
a. RGB image b. Gray image 

 
c. Binary image d. Foreground image 

 

Figure 2  Image segmentation of Cirsium arvense (L.) Scop. 
 

  
a. RGB image b. Gray image 

  
c. Binary image d. Foreground image 

 

Figure 3  Image segmentation of Conyza sumatrensis (Retz.) E. 
Walker 

 

  
a. RGB image b. Gray image 

  
c. Binary image d. Foreground image 

 

Figure 4  Image segmentation of Calystegia hederacea Wall. 

2.2  Feature extraction 
In this study, in order to improve the accuracy and effectiveness  

of weed identification, the color, texture, and shape features of the 
weed images were extracted. 
2.2.1  Color features 

Color features were extracted based on pixels of images which 
has the advantages of stable features after rotation, scale, and 
translation changes.  Since the colors of the three weeds are all 
green, the R, G, and B color component values of their RGB images 
have considerable overlap.  The color moment can reflect the color 
distribution characteristics of the images, and the color moment 
feature in the statistical color feature can be analyzed to improve 
the recognition ability of the feature. 

The HSV color space model was converted from the RGB 
color space model, which can be used for color expression in 
machine vision and as a supplement to the color features of weed 
images.  However, the V component of the HSV color model is 
independent of color.  In this study, only the color moment 
features of the R, G, B, H, and S components (mean, variance and 
skewness) were extracted under the RGB and HSV color space 
models of weed images, for a total of fifteen color features.  The 
calculations were carried out by Equations (2)-(4). 
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where, μi, σi and ξi are the mean, variance, and skewness of color, 
respectively; Pij is the i-th color channel component of the j-th 
pixel.  N represents the number of pixels in the image. 
2.2.2  Shape features 

Shape features are used to describe the shape parameters of 
objects and have a commendable correlation with human visual 
perception systems.  Weeds have different shapes.  In this study, 
seven Hu invariant moment[31,32] features and the roundness and 
slenderness ratio of weeds were selected as their shape features.  
The calculation methods of roundness and sheer length are shown 
in Equations (5) and (6), respectively. 

1) Form factor 

2

AreaForm factor = 4π
Perimeter

            (5) 

where, Area represents the area of the target (total number of 
pixels); Perimeter represents the perimeter of the target, which is 
the outermost contour length of the target. 

2) Eiongatedness 

2

AreaEiongatedness =
Thickness

             (6) 

where, Thickness represents the width of the smallest 
circumscribed rectangle of the target. 
2.2.3  Texture features 

The surface properties of the scene corresponding to the image 
or image area were described by texture feature.  It is a value 
calculated from the image.  This value quantifies the 
characteristics of the gray level change within the image area.  
The texture feature of weed images belongs to the combination of 
regular texture and random texture. 

At present, image texture feature extraction methods including  
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grayscale difference statistics, auto-correlation function, gray-level 
co-occurrence matrix (GLCM), local binary patterns (LBP) and 
spectrum-based feature analysis method[25,33].  Statistics-based 
texture analysis is the most common and most studied method in 
texture extraction methods[34].  In this study, the gray level 
co-occurrence matrix and local binary mode were selected, and the 
two texture features were fused as the texture features of the weeds 
images. 

1) GLCM 
Bhunia et al.[35] studied various statistical features in GLCM, 

and got four critical features of GLCM through experiments: 
Contrast, Asm, Entropy and Correlation.  The GLCM should be 
normalized before calculation.  The calculation equations are 
shown as Equations (7)-(11). 
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where, Pφ,d(i, j) is the normalized gray-level co-occurrence matrix; 
GGLCM(i, j) is the original gray-level co-occurrence matrix. 
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In the experiment, the pre-processed images were converted 
into sixteen gray levels, and then four key features of GLCM in 
four directions (0°, 45°, 90°, and 135°) were calculated to obtain a 
total of sixteen feature values. 

2) LBP 
The LBP texture feature description method has the advantages 

of having simple principle, small calculation, grayscale invariance 
and rotation invariance[36].  It uses the difference between the gray 
value of the center pixel and the adjacent pixel to generate the LBP 
code.  The basic symbols related to LBP were defined as follows: 
gc represents the gray value of the center point of the local area,  
gp (p=0, 1, …, 7) corresponds to the points distributed equally 
around the center point, (xc, yc) represents the center point 
coordinate.  The LBP local area texture calculation equation 
centered on (xc, yc) are shown in Equations (16) and (17). 
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The LBP operator with 8 points in the neighborhood can 

generate 28 kinds of LBP values, which determines the dimension 
of texture features.  In order to solve the problem of too many 
binary modes and improve statistics, Kou et al[37] proposed the 
“equivalent mode” to reduces the dimension of the mode types of 
LBP operators.  The adjacent elements from 0 to 1 or 1 to 0 
were regarded as a transition.  The value of the transition that 
did not exceed two during the calculation process was called the 
LBP equivalent mode, a total of 58 kinds, otherwise they are 
called the mixed mode.  In this study, this method was used to 
change the binary mode from the original 256 dimensions to 59 
dimensions.  
2.3  Classification and identification of weeds using BP neural 
network 

The BP neural network, which is also called the error reverse 
transmission neural network, is a neural network that uses the 
feedback values to adjust the connection between neurons 
continuously.  A three-layer BP neural network that trained with 
the multi-feature fusion of weeds was used to evaluate the 
relationship between the combination of features and weeds.  The 
specific steps were as follows. 

1) Training and test samples 
Three varieties of weeds, namely, Cirsium arvense (L.) Scop., 

Conyza sumatrensis (Retz.) E. Walker and Calystegia hederacea 
Wall. were selected as test samples, which have 135, 138, 109 
samples, respectively (a total of 382 samples).  Further, 70% of 
the samples were used as a training set to train the BP neural 
network, and the other samples were used to test the trained 
network model.  The flowchart of the algorithm for weeds 
classification is shown in Figure 5. 

 
Figure 5  Process of weeds identification and classification 

 

2) Hidden layer 
The hidden layer of the BP neural network is crucial for overall 

network performance.  The number of neurons in the hidden layer 
was selected according to 1 2n n a× + , where n1 denotes the 
number of input parameters, n2 denotes the number of output 
parameters, and a∈[0, 10].  Therefore, n1 was defined as the 
input-vector dimension, while n2 was defined as the output-vector 
dimension. 

3  Results and discussion 

The operating system for the entire test process is Windows 7,  
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and the development software is MATLAB 2016b and Python 3.8.  
A computer memory of 4 GB.  Processor AMD A8-4555M APU 
with Radeon (TM) HD Graphics 1.6 GHz was used. 
3.1  Results of feature extraction 

In this study, the color moment algorithm was used to extract 
the mean, variance, and skewness of the R, G, B, H, and S color 
components, for a total of 15 color features.  The gray level 
co-occurrence matrix and the LBP algorithm were used to extract 
16 gray level co-occurrence matrices and 59 LBP features.  Seven 
Hu invariant moment features and the roundness and slenderness 

ratio of weeds were extracted as their shape features.  The feature 
extraction results are shown in Figures 6-8 and Table 1. 

In order to eliminate the dimensional effects of weed 
eigenvalues, it needs to be normalized[36].  The normalized 
equation is shown in Equation (18). 

min

max min
2 1i

i
x xx

x x
−

= × −
−

               (18) 

where, xi represents the eigenvalue element; xmin and xmax represent 
the minimum and maximum eigenvalue of elements, respectively.  
The normalized characteristic means are shown in Figure 9. 

      
a. LBP feature image  b. Feature value of LBP image 

 

Figure 6  LBP feature for Cirsium arvense (L.) Scop. 

      
a. LBP feature image  b. Feature value of LBP image 

 

Figure 7  LBP feature for Conyza sumatrensis (Retz.) E. Walker 

      
a. LBP feature image  b. Feature value of LBP image 

 

Figure 8  LBP feature for Calystegia hederacea Wall. 
 

Table 1  Feature extraction results of weeds 
Average value Average value 

Feature Conyza sumatrensis 
(Retz.) E. Walker 

Calystegia 
hederacea Wall. 

Cirsium arvense 
(L.) Scop. 

Feature Conyza sumatrensis 
(Retz.) E. Walker 

Calystegia 
hederacea Wall. 

Cirsium arvense 
(L.) Scop. 

R_mean 45.8667 42.7536 17.1309 Entropy (0°) 2.1593 2.1959 1.0375 

G_mean 57.3106 61.5603 24.0253 Correlation (45°) 0.9820 0.9908 0.9944 

B_mean 46.2091 43.5314 16.1198 Contrast (45°) 0.8261 0.4253 0.1081 

H_mean 0.1253 0.1198 0.0470 Asm (45°) 0.4797 0.4644 0.7377 

S_mean 0.1200 0.1324 0.0537 Entropy (45°) 2.2345 2.2481 1.0559 
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Average value Average value 

Feature Conyza sumatrensis 
(Retz.) E. Walker 

Calystegia 
hederacea Wall. 

Cirsium arvense 
(L.) Scop. 

Feature Conyza sumatrensis 
(Retz.) E. Walker 

Calystegia 
hederacea Wall. 

Cirsium arvense 
(L.) Scop. 

R_variance 28.4164 27.0969 24.2520 Correlation (90°) 0.9873 0.9937 0.9964 

G_variance 35.1287 36.9628 33.4291 Contrast (90°) 0.5831 0.2921 0.0709 

B_variance 29.1671 27.1137 23.1441 Asm (90°) 0.4830 0.4668 0.7382 

H_variance 0.0706 0.0658 0.0640 Entropy (90°) 2.1530 2.1560 1.0355 

S_variance 0.0921 0.0836 0.0838 Correlation (135°) 0.9827 0.9915 0.9945 

R_third moment 68.2413 64.4991 49.3987 Contrast (135°) 0.7898 0.3915 0.1065 

G_third moment 82.6966 92.1044 66.6943 Asm (135°) 0.4801 0.4647 0.7377 

B_third moment 67.5192 68.5994 48.4416 Entropy (135°) 2.2321 2.2371 1.0561 

H_third moment 0.1706 0.2054 0.1299 5.3325 5.3205 4.2408 

S_third moment 0.3107 0.2987 0.1763 10.8609 10.9009 8.6610 

Form factor 0.0072 0.0168 0.0149 28.3732 25.4743 21.1588 

Eiongatedness 0.5033 0.605 0.4532 26.9369 26.5287 19.6618 

Correlation (0°) 0.9881 0.9940 0.9960 26.0880 25.5443 18.5659 

Contrast (0°) 0.5462 0.2783 0.0769 32.7587 32.1775 23.9954 

Asm (0°) 0.4830 0.4661 0.7381 

Hu invariant 
moments 

54.6419 52.7004 41.4980 
 

 
a. Cirsium arvense (L.) Scop.  b. Conyza sumatrensis (Retz.) E. Walker 

 
c. Calystegia hederacea Wall. 

Figure 9  Normalized characteristics means of three weeds 
 

3.2  Selection and analysis of weed features 
Feature selection was the key to weed identification[38].  As 

shown in Figures 6-8 and Table 1 that the G_variance, H_variance, 
S_variance, Correlation at direction 0° 45°, 90°, and 135° and 
characteristics data of the three weeds are familiar.  LBP features 
include 58 uniform patterns and other values (i.e., class 59)[39].  
Therefore, in order to reduce computation and improve weed 
recognition speed, remove the characteristics data of G_variance, 
H_variance, S_variance, Correlation of directions 0°, 45°, 90°, 

135°, and other values (i.e., class 59) of the LBP features. 
Besides, the color features and texture features of weed 

Cirsium arvense (L.) Scop. were different from Conyza 
sumatrensis (Retz.) E. Walker, and Calystegia hederacea Wall., 
but the shape features were similar.  Thus, in order to improve the 
recognition speed, color features and texture features were selected 
to distinguish Cirsium arvense (L.) Scop. from Conyza sumatrensis 
(Retz.) E. Walker, and Calystegia hederacea Wall.  However, 
color feature, shape feature, texture feature about Conyza 
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sumatrensis (Retz.) E. Walker, and Calystegia hederacea Wall., 
were familiar.  Therefore, in order to improve the recognition rate 
of Conyza sumatrensis (Retz.) E. Walker, and Calystegia 
hederacea Wall., color features, shape features, and texture features 
are needed to be integrated. 

3.3  Results of weed identification 
In this study, color features, shape features and texture features  

of weed images were extracted.  The recognition models based on 
BPNN were built.  The recognition rate and recognition rate time 
are shown in Table 2. 

 

Table 2  Recognition rate and recognition time for BPNN 

Name of weeds Feature type Feature 
number 

Net (Input layer, Hidden layer, 
Output layer) 

Recognition rate 
(BPNN)/%  

Recognition 
time/s 

Color feature 12 (12, 6, 2) 81.38 1 

Texture feature 70 (70, 13, 2) 88.35 2 Cirsium arvense (L.) Scop. and Calystegia hederacea Wall. 

Fusion feature 82 (82, 15, 2) 98.72 3 

Color feature 12 (12, 6, 2) 95.18 1 

Texture feature 70 (70, 13, 2) 86.34 3 
Cirsium arvense (L.) Scop. and Conyza sumatrensis (Retz.)  

E. Walker 
Fusion feature 82 (82, 15, 2) 97.59 4 

Color feature 12 (12, 6, 2) 75.86 1 

Shape feature 9 (9, 5, 2) 89.61 1 

Texture feature 70 (70, 13, 2) 90.91 2 

Calystegia hederacea Wall. and Conyza sumatrensis (Retz.)  
E. Walker 

Fusion feature 91 (91, 15, 2) 96.10 3 

Color feature 12 (12, 8, 3) 82.72 3 

Shape feature 9 (9, 6, 3) 72.41 2 

Texture feature 70 (70, 16, 3) 86.73 6 

Cirsium arvense (L.) Scop., Calystegia hederacea Wall. and  
Conyza sumatrensis (Retz.) E. Walker 

Fusion feature 91 (91, 18, 3) 93.51 8 
 

As can be seen from Table 2, the recognition rate of Cirsium 
arvense (L.) Scop., and Calystegia hederacea Wall. was 81.38% 
(based on color feature), 88.35% (based on texture feature) and 
98.72% (based on fusion feature), respectively.  Moreover, the 
recognition time was 3 s based on the fusion feature.  The 
recognition rate based on fusion feature was higher than that of 
color feature and texture feature.  However, the recognition time 
was similar.  Thus, fusion feature (color feature and texture 
feature) was selected when identifying Cirsium arvense (L.) Scop., 
and Calystegia hederacea Wall. 

The recognition rate of Cirsium arvense (L.) Scop., and 
Conyza sumatrensis (Retz.) E. Walker was 95.18% (based on color 
feature), 86.34% (based on texture feature), and 97.59% (based on 
fusion feature), respectively.  Recognition rates were similarly 
based on color feature and fusion feature, respectively.  However, 
the recognition time based on color feature was lower than fusion 
feature.  Thus, color feature was selected when identifying 
Cirsium arvense (L.) Scop., and Conyza sumatrensis (Retz.) E. 
Walker. 

The recognition rate of Calystegia hederacea Wall., and 
Conyza sumatrensis (Retz.) E. Walker was 75.86% (based on color 
feature), 89.61% (based on shape feature), 90.91% (based on 
texture feature), and 96.10% (based on fusion feature), respectively.  
Furthermore, the recognition time was 3 s based on fusion feature.  
The recognition rate based on feature fusion was higher than that of 
color feature, shape feature, and texture feature.  Otherwise, the 
recognition time was similar.  Thus, fusion feature (color feature, 
shape feature, and texture feature) was selected when identifying 
Calystegia hederacea Wall, and Conyza sumatrensis (Retz.) E. 
Walker.  

The recognition rate of Cirsium arvense (L.) Scop., Calystegia 
hederacea Wall., and Conyza sumatrensis (Retz.) E. Walker was 
82.72% (based on color feature), 72.41% (based on shape feature), 
86.73% (based on texture feature), and 93.51% (based on fusion 
feature), respectively.  Moreover, the recognition time was 8 s 
based on fusion feature.  It can meet the requirement of weed 

identification time[40].  The recognition rate based on fusion 
feature was higher than that of color feature, shape feature, and 
texture feature.  Thus, fusion feature (color feature, shape feature, 
and texture feature) was selected when identifying Cirsium arvense 
(L.) Scop., Calystegia hederacea Wall., and Conyza sumatrensis 
(Retz.) E. Walker. 

The recognition rate of Cirsium arvense (L.) Scop., Calystegia 
hederacea Wall. and Conyza sumatrensis (Retz.) E. Walker based 
on shape feature was lower than that of color feature and texture 
feature.  The morphology of Cirsium arvense (L.) Scop., and 
Conyza sumatrensis (Retz.) E. Walker may be similar because 
Cirsium arvense (L.) Scop., and Conyza sumatrensis (Retz.) E. 
Walker belong to the composite family, but color feature and 
texture were different among the different family and genus[41].  
However, the recognition rates of color feature, shape feature, and 
texture feature were all lower than that based on multi-feature 
fusion.  That is because multi-feature fusion contains more weed 
image information so that it can improve the identification 
accuracy of weeds[29].  

In addition, in this study, the recognition rates of different 
recognition models based on the multi-feature fusion were 
compared.  Based on these features, K-Nearest Neighbor (KNN), 
Random Forest (RF), and Support Vector Machine (SVM) 
recognition models were built.  The hyper-parameter K of the 
KNN algorithm was set to 4.  The number of RF model trees was 
set to 100.  The minimum sample required to split the internal 
nodes was set to 2.  The minimum number of samples on the leaf 
node of the RF algorithm was set to 1.  The SVM algorithm used 
Gaussian kernel function, and the recognition method used 
one-vs-one[33].  The recognition rate for weeds using the BPNN 
model was 93.51%, while the recognition rate of the KNN, RF, and 
SVM models were 89.56%, 84.92%, and 92.67%, respectively. 
BPNN model has the best recognition performance. 

4  Conclusions 

In this study, according to the characteristics of the weeds at  
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asparagus fields, 2G-R-B color factors were used to convert RGB 
images of weeds to grayscale images.  Threshold segmentation of 
the grayscale image of weeds was applied using Otsu method.  
Then the internal holes of the leaves were filled through the 
expansion and corrosion morphological operations, and other 
interference targets were removed to obtain the binary image.  
The foreground image was obtained by masking the binary image 
and the RGB image.  Then, the color moment algorithm was used 
to extract weeds color feature, the gray level co-occurrence matrix 
and the LBP algorithm were used to extract weeds texture features, 
and seven Hu invariant moment features and the roundness and 
slenderness ratio of weeds were extracted as their shape features.  
Recognition rates of Cirsium arvense (L.) Scop., and Calystegia 
hederacea Wall. were 81.38% (based on color feature), 88.35% 
(based on texture feature) and 98.72% (based on fusion feature), 
respectively.  Recognition rates of Cirsium arvense (L.) Scop, and 
Conyza sumatrensis (Retz.) E. Walker were 95.18% (based on 
color feature), 86.34% (based on texture feature), and 97.59% 
(based on fusion feature), respectively.  Recognition rates of 
Calystegia hederacea Wall, and Conyza sumatrensis (Retz.) E. 
Walker, were 75.86% (based on color feature), 89.61% (based on 
shape feature), 90.91% (based on texture feature), and 96.10% 
(based on fusion feature), respectively.  Recognition rates of 
Cirsium arvense (L.) Scop., Calystegia hederacea Wall., and 
Conyza sumatrensis (Retz.) E. Walker were 82.72% (based on 
color feature), 72.41% (based on shape feature), 86.73% (based on 
texture feature), and 93.51% (based on fusion feature), 
respectively. 

In future work, the authors plan to obtain more data sets and 
use a deep learning framework for weed classification to obtain 
better classification results.  Furthermore, since more images will 
be added to the provided dataset, more experiments will be 
performed in order to always deploy the best weed identification 
system. 
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