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Accurate crop row recognition of maize at the seedling stage using
lightweight network

(1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
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Rural Affairs, Beijing 100083, China)

Abstract: Accurate extraction of crop row is very important for automation of agricultural production. Crop rows are required
for accurate machine guidance in agricultural production such as fertilization, plant protection, weeding and harvesting. In this
study, an efficient crop row detection algorithm called Crop-BiSeNet V2 was proposed, which combined BiSeNet V2 with a
spatial convolutional neural network. The proposed Crop-BiSeNet V2 detected crop rows in color images without the use of
threshold and other pre-information such as number of rows. A data set had 2697 maize crop images was constructed in
challenging field trial conditions such as variable light, shadows, presence of weeds, and irregular crop shape. The proposed
system was experimentally determined to overcome the interference of different complex scenes. And it can be applied to crop
rows of different numbers, straight lines and curves. Different analyses were performed to check the robustness of the
algorithm. Comparing this algorithm with the Fully Convolutional Networks (FCN) algorithm, it exhibited superior
performance and saved 84.85 ms. The accuracy rate reached 0.9811, and the detection speed reached 65.54 ms/frame. The Crop-
BiSeNet V2 algorithm proposed in this study show strong generalization performance for seedling crop row recognition. It
provides high-reliability technical support for crop row detection research and assists in the study of intelligent field operation
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1 Introduction

Due to the development of precision agriculture, crop row
detection has become an important part of agricultural intelligent
equipment'. It is widely used in agricultural production, such as
assisted navigation, precise fertilization, weeding, spraying and
harvesting®®*!. With the help of crop row detection, people can apply
herbicides and fertilizers in a targeted manner, which can further
save fertilizer and pesticide, reduce labor intensity and
environmental pollution, improve economic benefits.

Crop row detection process usually involves three main steps:
image acquisition, image segmentation and crop row detection, and
lots of work has been carried out by the researchers in these steps.

In image acquisition and preprocess step, Zheng et al.”! used
unmanned aerial vehicles to obtain RGB, NIR-GB and MS images
of rice crops. The overall accuracy of these data sources reached
0.9125, 0.9288, and 0.9353. Another problem is that in the image
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taken by the front-view camera, due to the perspective effect, things
that were originally parallel crossed in the image. In order to further
highlight the distant target area, Rabab et al.! used Inverse
Perspective Mapping (IPM) to realize rice row detection and
improve the recognition accuracy. Also, the Region of Interests
(Rol) of every image is needed before crop line detection, and there
are multiple ways to choose it'". Chen et al.'! determined the ROI
by using the prior knowledge that the adjacent images of the video
will not have mutations.

In terms of crop row feature extraction, to avoid the
interference of complex lighting, shadows, weeds and other factors
in the field, Rabab et al. used the green features of crops to extract
green factors from RGB images. The recognition accuracy of maize,
celery, potato, onion, sunflower and soybean rows was 0.84 in the
open data set”. Su et al.'”! obtained the number of maize row by
extracting ultra-green features and Hough transform. However,
these models require manual input of threshold parameters
according to different weed densities. In order to overcome the
influence of different weed densities, plant growth stages and
weather conditions, Kanagasingham et al.'* converted the image
into HSV color space and manually selected the threshold to extract
green rice plants. At low weed density, the accuracy of heading
compensation was less than 2.5°. To achieve detection, the results
of image segmentation were used to fit crop rows.

As mentioned before, existing machine vision methods are

relatively mature!'***

!, but there are also some challenges:

1) Under outdoor conditions, variable lighting conditions,
shadows, insufficient lighting and other factors will affect the image
quality.

2) Crops may be confused with weeds that are similar in shape,
texture and color.
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3) Different shapes and rules of crops at different growth stages
lead to wrong detection result.

Deep learning model can effectively solve problems such as
complex lighting and weed interference. Liu et al.?" established a
multi-scale layered feature deep learning network model to identify
maize stalks. And the average recognition accuracy was 0.9893
under six weed densities and different light conditions. Zhang et
al.”? extracted the row and center lines of rice seedlings based on
the YOLOV3 target detection algorithm. Under different growth
stages of seedlings, strong wind, reflection and other special scenes,
the average accuracy reached 0.9147. And the processing time of a
single image was 82.6 ms. However, models often sacrifice time
performance to obtain higher recognition accuracy. Therefore, it is
more reasonable to adopt an end-to-end crop row segmentation
network. Adhikari et al.”! constructed a deep convolutional codec
network (ESnet) for crop row detection of rice seedlings. Crop rows
were extracted from the input image, with an average pixel
deviation of 2.89 pixels and detection speed of 10.97 fps.

Common convolutional neural models do not fully explore the
spatial location relationship of crop rows. Spatial information is
very but
discontinuous appearance. By learning spatial information, the deep
neural network can predict crop row position and solve the
problems of the seedling belt fracture. In order to make full use of

important for targets with strong priori shapes

spatial structure information of images, Liu et al.”! and Luo et al.®
combined Convolutional Neural Network (CNN) and Conditional
Random Field (CRF), and used large convolution kernels to
transmit spatial information. Pan et al.® proposed a new

convolution method (Spatial CNN, SCNN), which converted the
traditional CNN layer-to-layer connection into a slice-to-slice form.
Pixels could transmit information between rows and columns, and
the results showed that it had a good recognition effect on long
objects, such as lane lines and telephone poles.

To sum up, due to the complex and changeable environment,
traditional methods cannot adapt to detection tasks in various
scenarios. Therefore, this study proposed a crop row detection
method based on convolutional neural network. Different data
labeling methods are explored in order to improve the detection
effect. In order to achieve a faster detection speed, a network with
better real-time performance was selected as the backbone network.
The multi-branch designed to overcome the
interference between rows of different crops. Images of crop rows

structure was

containing different numbers, straight lines and curves can be
detected correctly. Aiming at the situation of crop rows breakage
and few visualization features, the model fully explored the image
spatial information features.

2 Materials and methods

As illustrated in Figure 1, crop row detection is a complicated
task with multiple steps. The general convolutional neural network
had complex structure and many model parameters, which cannot
meet the real-time requirements of crop row detection. Therefore,
the lightweight network was selected as the backbone network. The
backbone network was optimized for a variety of complex scenes
and strong spatial information of crop rows. The main research
contents are shown in Figure 2.
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Figure 2 Overall process of proposed method

1) Crop row images. The crop row data sets under different
growth stages of maize seedlings were obtained, including different
weed densities, different light, seedling belt fracture and other
complex scenarios.

2) Data set Labeling. In order to simplify the labeling, a method
using dot-line labeling combined with morphological dilation was

proposed.

3) Networks structure. A crop row segmentation model based
on convolutional neural network was constructed. After comparing
the real-time performance and accuracy of different semantic
segementation networks, BiSeNet V2 was selected as the backbone
network. And Crop-BiSeNet V2 model combined with Spatial CNN
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was proposed to improve the robustness of crop row segmentation
model while meeting the real-time requirements.

4) Evaluation and Validation. The algorithm was evaluated
experimentally in terms of detection accuracy and time. According
to Intersection of Union (IoU), false positive rate (fp), false negative
rate (fn) and accuracy rate (acc) indexes, Crop-BiSeNet V2 model
was compared with BiSeNet V2 to show its superiority. Meanwhile,
the sizes of training parameter files (DATA) and network structure
files (META) of different models were compared to verify the real-
time performance of the algorithm.

2.1 Data acquisition and preprocessing
The seedling stage of maize refers to the period from sowing to

jointing. The seedling period is generally 30 d. The number of

= 7

b. Weed interference

a. Seedling belt fracture

leaves contains 3-6 pieces. The growth of leaf volume is relatively
slow. This stage is convenient for field management of agricultural
machinery. At the same time, this stage determines the number of
plants, and lays the foundation for the key period of large ears, more
grains, and high yield of maize. Taking maize seedling as the
research object, the data set was constructed in this paper. These
images were taken with a Sony IMX380 digital camera.
Furthermore, these images were taken in different scenes with
moderate changes in yaw, pitch and roll angles to simulate field
machinery operations. The data set contained 2697 images of
different scenarios, such as different weed densities, seedling belt
breakage, different growth stages, and shadow interference. The
different complex scenarios are shown in Figure 3.

d. Shadow

c. Different canopy sizes

Figure 3  Four complex scenarios

In Figure 3a, the seedling belt may be broken. The recognizable
crop row pixels are missing, so segmentation is difficult. The model
needs to explore the crop row context information to infer possible
locations.

In Figure 3b, since the color and texture of weeds are similar to
maize crops, different weed densities will cause great interference in
crop row identification.

In Figure 3c, the canopy width is different at different growth
stages of crops, which brings the challenge to curve fitting.

In Figure 3d, there are some differences in crop row under
different light conditions. The area of shadow occlusion greatly
increases the difficulty of segmentation.

The original image resolution was 1280%720 pixels, and the

d. Rotation

g. Cropping

b. Upside down

e. Brightness enhancement

h. Saturation enhancement

model input was adjusted to 512x1024 pixels to further reduce the
calculation time and memory requirements. The data set of 2697
images was randomly divided into training set, validation set and
test set at the 3:1:1 ratio. In order to adapt to the complex
environment lighting and different angles, data augmentation
technology was applied to the raw data. The data augmentation
method converts the original image data into a variety of
transformed outputs to increase the number of samples. The
preprocessing steps included flipping, blurring, cropping, rotating,
and adjusting the brightness, contrast, and saturation of the image.
Data augmentation can effectively improve the generalization

ability of the model. Based on Figure 3a, the data enhancement
effects are shown in Figure 4.
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f. Brightness diminished

T
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Figure 4 Examples of data enhancement

Large amounts of training data can improve the prediction
performance of deep learning model. However, for DNN supervised
training, data must be manually annotated with ground facts.
Labeling large amounts of data is expensive and time-consuming. In
addition, crop rows do not have well-defined boundaries, and fuzzy
boundaries make labeling difficult.

In order to reduce the reliance on large-scale detailed labelings,
the weak supervision technique was applied in this paper. Under the

condition of weak supervision, the training images were only
labeled at the image level or sparsely labeled at the pixel level. And
the labeling required less time and effort. In this paper, a method
based on dot-line labeling combined with morphological dilation
was proposed. After the following test verification, this method had
better performance.

Figure 5 simply shows the process of the proposed labeling
method. The intersection of the stem and leaf of maize crop usually



192 February, 2024 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 17 No. 1

represents the center of the crop. A line is connected based on the
center point of the same row of crop rows. A single line segment
cannot represent more cropped pixels. Morphological dilation
operation is applied to obtain more information. Compared with
general color threshold-based segmentation and manual fine
segmentation method, the labeling method proposed in this paper
has better performance. The binarization results of different labeling
methods are shown in Figure 6.

I Crop row images I

| Center point selection and connection |

l

I Morphological expansion l

Figure 5 Process of dot-line labeling

b. Binary result
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c. Binary result using
artificial refinement
labeling

d. Binary result
using dot-line
labeling

e. Binary result
using our labeling
method

Figure 6 Crop row labeling results

As shown in Figure 6, the effect of different methods varies
greatly. Color threshold labeling method requires manual setting of
the threshold, which is time-consuming and labor-intensive. This
method also cannot meet a variety of complex scenarios. Artificial
refinement labeling method is time-consuming. Dot-line labeling
method can greatly reduce the complexity of labeling. But at
different growth stages, crop rows have different widths, which
means a single dot-line label cannot cover the actual situation. The
proposed dot-line labeling method combined with morphological
dilation algorithm can obtain more useful crop row pixel

information, help the network to learn and converge quicker.
2.2 Lightweight backbone network selection

Image semantic segmentation is to classify images pixel by
pixel and identify semantic information such as entity category.
Classical semantic  segmentation models include Fully
Convolutional Networks (FCN)®, U-Net?, SegNet* and Deeplab
V2, The early FCN and SegNet have simple structures, low
accuracy and poor real-time performance. Deeplab, RefineNet and
PSPNet have made a lot of improvements to FCN, but they cannot
meet the real-time requirements.
2.2.1 Network structure of BiSeNet V2

BiSeNet V2 network was a lightweight semantic segmentation
network with fast segmentation speed. It proposed a two-sided
segmentation structure. In order to directly compare the accuracy
and real-time performance of various models, Yu et al.®” conducted
a test on the Cityscapes data set, the result is shown in Figure 7. From
the perspective of detection accuracy (Mean IoU) and inference
speed, BiSeNet V2 has better performance than other networks.

A 1
78 | PSPNet !
; BiSeNetV2-Large
' e .
! SwiftNet @ BiSeNetV1|B BiSeNetV2
X 73t i °
< fe FRRN !
5 ,DAlz]\é% N ® DFANet A
° ' ¢ 3 .
=2 1 9o ICNet  BiseNetV1 A DFANet A’
S 68 Fpiionto! ® ERFNet ® Fast-SCNN
S ' ® DFANet B
= fe FCN-8s 1
1
Deeplab
E
63 PCRF-RNN |
!
30! ® ESPNet
Qi ENet
58 - L gt L L >
0 30 60 90 120 150

Inference speed/fps

Figure 7 Comparison of common semantic segmentation
network models

Based on the basic FCN network and referring to the structure
of BiSeNet V2, a dual-branch crop row recognition backbone
network is constructed. Low-level detail information and high-level
semantic information are very important for semantic segmentation
tasks. However, in order to speed up the inference, current methods
always reduce high-level information, resulting in lower accuracy.
In recent years, the BiSeNet V2 network has been used to process
spatial details and semantic information respectively for the high
precision and efficiency of real-time semantic segmentation. The
model achieved 0.726 Mean IoU on the Cityscapes test set with a
speed of 156 fps®”. The structure of BiSeNet V2 network is shown
in Figure 8, which mainly includes detail branch, semantic branch,
guidance aggregation layer and enhancement training module.
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| head | head
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Figure 8 BiSeNet V2 network structure
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The detail branch mainly focuses on the low-level details and
extracts the high-resolution feature representation of the image. It
has a wide channel and a shallow structure, so it has a rich channel
capacity and can encode more spatial details.

Semantic branching is a lightweight convolutional structure
with narrow channels and deep networks. The channel capacity is
1/4 of the detail branch. Fast sub-sampling strategies, such as
convolution operation with a step size of 2 and maximum pooling,
are used to combine outputs to improve feature representation and
computational efficiency. At the same time, global pooling and
residual link are used to embed global context information to
increase receptive field to obtain high-level semantic information.

The aggregation layer is used for detail branching and feature
fusion with semantic branching. Down and Up indicate image down-
sampling and up-sampling, respectively. The features of different
branches complement each other, and different scale feature
representations can be obtained through different scale guidance.
Feature fusion is performed by bilateral aggregation. Different sizes
of output feature maps have different sizes, and simple fusion and
stacking will only lose more image features. In the bilateral

aggregated feature layer structure, the semantic branch obtains more
detailed crop row context information, but the feature map size
is smaller and requires 4 times the upsampling operation. The detail
branch obtains more effective detail information and guides the
semantic branch through a 4-fold downsampling operation. Finally,
the results of the two branches are superimposed, and the same
feature map is output to achieve the best segmentation effect.
In order to further improve the segmentation accuracy, an enhanced
training strategy is proposed, which guided the final segmentation
results through multi-layer semantic feature branches. The feature
representation is enhanced in the training stage and discarded in
the inference stage without increasing the cost of the inference
process.
2.3 End-to-end detection

In this study, an end-to-end crop row detection algorithm is
proposed. A multi-branch structure is designed as shown in Figure 9.
The network includes semantic segmentation and instance
segmentation. The multi-branch structure realizes different
segmentation based on the backbone network. And it provides the
basis for subsequent crop row fitting.

Binary segmentation

Backbone network |

Instance segmentation

Clustering

Figure 9 End-to-end structure with multiple branches

Semantic segmentation realizes the secondary classification of
input images. The pixel is judged to be a background or crop. Each
crop row forms a connecting line. When drawing the actual
crop line, some cases where there is no obvious visual crop are
also included. In this way, the network will learn to predict the
crop position.

Since the two classes (crop and background) are highly
imbalanced, the bounded inverse class weighting (W) is applied,
as shown in Equation (1). In this equation, p.. is the probability of
the corresponding category in the entire sample, and ¢ is a
hyperparameter (set to 1.02). The problem of unbalanced sample
distribution is solved.

1
W = s (M

In order to achieve different number of crop rows, instance
segmentation initializes each pixel as an embedding vector. The loss
function is designed. The distance of the pixel vectors belonging to
the same crop row is very small, and the pixel distance of different
crop rows is very large. The loss function is mainly composed of
two parts: variance loss (L,,) and distance loss (Ly), as shown in
Equation (2).

1 C 1 N
La=75 > N > flee—xi-6.]"
c=1 i=1

l C C
Lux= oy 2o 2 [0l —pal] [ e # B

cA=1 ¢B=1

()

where, C is the number of crop rows; N, is the number of pixels
belonging to the same crop; x, is the average vector of crop rows; x;
is the pixel vector; [x].=max(0, x); J, represents the distance from
the pixel vector to the mean vector; J, represents the distance
between the mean vectors.

When the distance between the pixel vector of the same crop
line and the average vector y, is greater than J,, L., effectively
makes x; close to d;. When the distance between the average vectors
ey and . of different crop rows is less than d,, Ly works to keep
leq and p g away from each other. The trained feature vector is used
in the clustering algorithm to achieve the purpose of instance
segmentation.

2.4 Feature extraction of spatial information
2.4.1 Crop row spatial information analysis

In addition to the good scenes with clear crop rows, there are
also a large number of complex scenes. Four kinds of complex
farmland scenes are analyzed, including crop row breaking, weed
interference, different canopy widths and shadow interference
scenes, as shown in Figure 3.

In this study, the improvement method was proposed by
analyzing the crop row in complex scenes. In the farmland scene,
different crop rows have a certain position relationship. At the same
time, the crop rows also have a certain priori shape, and the same
crop is collinear. The different crop rows are approximately parallel
in the real world. This kind of spatial location relationship is called
spatial context information. Pan et al.*! used Spatial CNN (SCNN)
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to extract Spatial context information. Through comparative
experiments, SCNN is superior to CRF/MRF (Probability Graph
Model), which has a large amount of computation and poor real-
time performance. It performs well on targets with strong spatial
relationships but poor visual cues, such as lane lines, wires and
walls. Therefore, the Spatial CNN was combines with original
BiSeNet V2 to improve the accuracy of crop row segmentation.
2.4.2 Network structure of Spatial CNN

Different from the traditional convolution method, the spatial
CNN extends the layer-by-layer convolution to slice-by-slice
convolution, in which the rows and columns of feature graphs are
regarded as ‘layers’ and convolved sequentially. Assuming that the
height, width, and channel number of the input 3D feature map are
H, W, and C, the structure of Spatial CNN is shown in Figure 10.
The model effectively overcomes crop row breakage and missed
detection.

Spatial CNN firstly slices the 3D feature map from top to

c P P

bottom, consisting of H slices. Then the first piece of vector is
convolved, and the size of the convolution kernel is Cxw (w=9).
After the convolution result is non-linearly activated, the second
slice vector is updated, and so on until the end. The whole process is
called SCNN_D. A bottom-up convolution operation, SCNN_U, is
then performed, which is similar to the SCNN_D process but with a
change of direction. Similarly, slice and convolution operations are
carried out from left to right and right to left to obtain the final 3D
feature map. This piece-by-piece updating method is similar to
residual network and can reduce the difficulty of training. Spatial
CNN’s unique convolution mode enables pixel information to be
transmitted between different neurons on the same layer. It
improves the ability of extracting spatial information from images.
Therefore, it was applied to BiSeNet V2 network to improve the
accuracy of crop row extraction in complex scenarios. In this paper,
the improved BiSeNet V2 network is named Crop-BiSeNet V2. The
structure is shown in Figure 11.

AT P

=10=

| |-

Input Output
SCNN_D SCNN_D SCNN_R SCNN_L
Figure 10  Spatial structure of CNN
End-to-end
detection
—
14 18

Figure 11

Although Spatial CNN structure can be added in any position of
the network structure, the size of the input feature graph of Spatial
CNN structure should not be too large in order to ensure the real-
time performance of the network. In this study, it is placed between
the encoder and the decoder. The feature map is 32x64 pixels.

Although the output crop row segmentation results of
convolutional neural network are relatively fine, specific crop row
parameters are still needed for the convenience of autonomous
navigation, weeding and spraying applications. In this study, the
quadratic polynomial curves are used to complete the fitting. Before
crop row fitting, crop row feature points need to be obtained. The
network segmentation model obtains the pixel points of each crop
row as the fitting feature points. By inputting a series of feature
points, the least squares method fits a curve with the smallest
deviation from the feature points. Since crop row recognition needs
to take into account both straight lines and curves, the polynomial
function is used as the objective function of fitting. Finally, the

Crop-BiSeNet V2 network architecture

results are remapped back to the original image.

3 Results and discussion

3.1 Evaluation indicators

The model performance was evaluated in terms of detection
accuracy and time. Detection accuracy was an important index of
model quality. The detected crop row was compared with the crop
row of the ground truth image. The detection speed was directly
related to the practical application value of the model. The output of
the model was mainly divided into two categories: crop row pixels
and background pixels. The confusion matrix of classification
results is listed in Table 1. TP represents the positive sample
predicted by the model to be positive. TN represents a negative
sample predicted by the model to be negative. FP represents a
negative sample that the model predicts to be positive. FN
represents the positive samples that the model predicts to be
negative.
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Table 1 Classification results confusion matrix
Predicted

Truth value - -
Crop row pixel Background pixel
Crop row pixel TP FN
Background pixel FP ™

The segmentation performance of the model was measured by
IoU, and the false positive detection rate (fp), false negative
detection rate (fn) and accuracy rate (acc) were calculated. The
details are shown in Equations (3)-(6).

oV = oo )
o= )
= % 5)
acc = % (6)

3.2 Model training and visualization

In this study, the TensorFlow framework was used to build the
crop row segmentation model, and the model was trained and tested
on the PC side. The computer configuration details are listed in
Table 2.

Table 2 Computer configuration details

Name Configuration
Operating system Ubuntul8.04
CPU Intel(R) Xeon(R) Silver 4210 CPU @ 2.20 GHz
GPU NVIDIA Tesla T4
memory 16 G
CUDA 10.0
TensorFlow 1.13.1
Python 3.7

The size of the model input image was 512x1024, and the data
set was divided into training, validation and testing sets at a 3:1:1
ratio. The model was trained for 500 epochs in total. The loss
function was Softmax function and the optimizer was Adam.
Specific training parameters are listed in Table 3.

Table 3 Training parameter setting

Parameter names Parameter value

Training batches 32
Validation batches 4
Training epochs 500
Weight decay 0.0005
Learning rate attenuation factor 0.1
Initial learning rate 0.01

After the training of crop row model was completed,
experiments were carried out in the test set, and the segmentation
results are shown in Figure 12.

The accuracy rates in different scenarios were counted. The
accuracy of the seedling belt fracture, weed interference, different
canopy sizes and shadow data sets reached 0.9845, 0.9762, 0.9891
and 0.9746, respectively. As can be seen from Figures 12a-12d,
there were some interference of weeds and seedling belt fracture or
discontinuity in the image. The Crop-BiSeNet V2 proposed in this
paper can successfully identify crop rows, and the segmentation

results were relatively fine, which indicated that the model had good
robustness. Since weeds have similar colors and textures, crop row
pixels are easily confused. Pixels were missing due to the local
seedling belt fracture. But the model had good spatial information
extraction capabilities, and the interference of complex scenes had
little effect on the overall results.

&~ 4

b. Weed interference

c. Different canopy sizes

d. Shadow

Figure 12 Data set test results

3.3 Comparison of different labeling methods on performance

In order to explore the impact of different labeling methods on
performance, the experimental comparisons were conducted. The
network model used BiSeNet V2 as the backbone network for
training. The training parameters are listed in Table 3. Finally, IoU
is used to measure the performance of the model. The results are
listed in Table 4. The labeling method proposed in this paper has
better performance.

Table 4 Comparison of different labeling methods

Labeling methods TIoU
Color threshold labeling 0.6700
Artificial refinement labeling 0.7250
Dot-line labeling 0.6200
This study 0.8138

Most of the focus in the literature is on detecting or segmenting
“objects” with well-defined shapes, appearances, and boundaries.
Due to the similar appearance and blurred boundaries, less attention
is paid to complex scenes that are difficult to understand or even
difficult to annotate correctly. A labeling method using dot-line
labeling combined with morphological dilation algorithm is
proposed. The labeling of complex scenes in crop rows is
simplified. The proposed labeling method is particularly useful for
pixel-based crop row segmentation.

3.4 Model evaluation

According to IoU, fp, fn and acc indexes, FCN, BiSeNet V2
and Crop-BiSeNet V2 models were compared, and the basic
network of FCN was VGG16. Different network models used the
same training parameters for training, as listed in Table 3. The
evaluation indexes were calculated on the test set, and the results
are listed in Table 5.
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Table 5 Evaluation index calculation results on the test set

Model TIoU fp fn acc
FCN-VGG16 0.7928 0.2408 0.0631 0.9369
BiSeNet V2 0.8648 0.1903 0.0333 0.9667

Crop-BiSeNet V2 0.8980 0.1501 0.0189 0.9811

It can be seen from the above table that the segmentation
accuracy of BiSeNet V2 model was far better than that of FCN
model. The Crop-BiSeNet V2 model had the highest IOU. IOU was
0.0332 higher than original BiSeNet V2. Actual segmentation
effects of different models are shown in Figure 13.

a. Original image

AR VAN TR RN

b. FCN-VGG16

ZANVANVINER

c. BiSeNet V2

AN VAN IR

d. Crop-BiSeNet V2

Figure 13  Segmentation results of different models

Figure 13b shows the segmentation results of FCN-VGG16
model. On the whole, the crop row segmentation accuracy of this
model was low. The crop row recognition was inconsistent and
smooth, and there were missed detection under different
background interference. And the anti-interference ability of the
model was poor. Figure 13c shows the segmentation results of
BiSeNet V2 model. Compared with FCN-VGG16, the results of the
crop rows tested by this model are more coherent. Figure 13d shows
the segmentation results of Crop-BiSeNet V2 model. Compared
with BiSeNet V2, segmentation results of this model were more
refined. SCNN module was used to enhance spatial context
awareness and overcome the missed detection in test images 2 and 4.

To sum up, Crop-BiSeNet V2 had the highest segmentation
accuracy and the best ability to resist complex environment in the
data set used in this study.

3.5 Time performance comparison

On the crop row data set, the speed of processing single image
was compared, and the sizes of training parameter files (DATA) and
network structure files (META) of different models were also
compared. The results are listed in Table 6. Considering the
practical application cost in the future, this model used NVIDIA
GeForce GTX 1050 low-cost graphics card for reasoning. The
segmentation time of BiSeNet V2 model was the fastest, and the
processing time of each image was 27.3 ms. The detection speed of
FCN model was the slowest, and Crop-BiSeNet V2 was about
38.24 ms slower than the original BiSeNet V2 network, and
compared with FCN, the detection speed of Crop-BiSeNet V2 was
saved by 84.85 ms. FCN model had a large number of parameters
and structure due to its many layers. BiSeNet V2 was a lightweight
network, and Crop-BiSeNet V2 added Spatial CNN module on the

Table 6 Performance comparison of different models

Model Time/ms Number of parameters/MB Model structure/MB
FCN-VGG16 150.39 408.0 7.75
BiSeNet V2 27.30 26.6 14.7
Crop-BiSeNet V2 65.54 333 20.9

basis of the former, which increased the number of parameters and
model structure. Crop-BiSeNet V2 took about 65 ms to detect a
single image, that is, about 15 fps.
3.6 Performance on public data sets

The proposed algorithm was applied to the public data set!".
The data set consists of 281 images. The image contains images of
maize, celery, potatoes, onions, sunflowers, and soybeans. At the
same time, the images were taken at moderately varying yaw and
pitch angles. The accuracy rate reaches 0.9712. Some image
examples are shown in Figure 14. The images a-d are examples of
crops with weeds. The images e-h are examples of different types of
crops. The images i-1 are examples of crops at different growth
stages. The images m-p are examples of crop rows with curvature.
The data set has not been trained, directly input for testing. The
result of binarization segmentation is shown in Figure 15. The test
result is shown in Figure 16. It can be seen from the figure that the
proposed algorithm is robust. Any number of crop rows can be
detected. Straight and curved crop rows can be accurately detected.

4 Conclusions

In this study, a novel method for crop row detection was
proposed, which combine light weight network BiSeNet V2 and
Spatial Convolutional Neural Network (SCNN). Compared with the
color threshold and manual fine labeling, the dot-line labeling
combined with the morphological dilation method was simple and
efficient. The backbone network of BiSeNet V2 had fewer network
parameters to ensure the recognition speed. The Crop-BiSeNet V2
method was applied to the new and challenging crop row data set. It
was able to effectively overcome the weed density, seedling with
fracture, crop canopy width and shade. The results showed that
continuous and long thin structures can be learned effectively, and
performance can be greatly improved. This method was end-to-end
recognition and can be used for unknown crop rows and straight or
curved geometry. It was highly insensitive to different weed
densities and shadow interference, and can accurately detect rows of
maize crops at different growth stages. Compared with the classic
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Fully Convolutional Networks (FCN) algorithm, the proposed
model had better accuracy and detection speed. The accuracy rate
reached 0.9811, and the detection speed was saved by 84.85 ms.
The future work will apply the crop row detection algorithm to
the embedded system for testing and deployment, and serve in the
fields of unmanned spraying operation, weeding operation and
assisted navigation, etc. Finally, the Crop-BiSeNet V2 method

should be tested in practical application as a component of a

proto

type intelligent agricultural machinery system.
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