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Abstract: The aim of this study was in-line, rapid, and non-destructive detection for soluble solid content (SSC) in pomelos
using visible and near-infrared spectroscopy (Vis-NIRS). However, the large size and thick rind of pomelo affect the stability of
spectral acquisition and the biological variabilities affect the robustness of models. Given these issues, in this study, an efficient
prototype in-line detection system in transmittance mode was designed and evaluated in comparison with an off-line detection
system. Data from the years 2019 and 2020 were used for modeling and the external validation data were obtained by the in-
line detection system in 2021. The wavelength selection methods of changeable size moving window (CSMW), random frog
(RF), and competitive adaptive reweighted sampling (CARS) were used to improve the prediction accuracy of partial least
squares regression (PLSR) models. The best performance of internal prediction was obtained by CARS-PLSR and the
determination coefficient of prediction (R}), root mean square error of prediction (RMSEP), and residual predictive deviation
(RPD) were 0.958, 0.204%, and 4.821, respectively. However, all models obtained large prediction biases in external
validation. The latent variable updating (LVU) method was proposed to update models and improve the performance in
external validation. Ten samples from the external validation set were randomly selected to update the models. Compared with
the recalibration method, LVU could effectively modify the original models which matched the SSC range of the external
validation set. The CSMW-PLSR models were more robust in external validations. The off-line model with LVU performed
best with a root mean square error of validation (RMSEV) of 0.599% and the in-line model with recalibration obtained RMSEV
of 0.864%. These results demonstrated the application potential of the transmittance Vis-NIRS for in-line rapid prediction of

SSC in pomelos and the modeling and updating methods could be applied to samples with biological variabilities.
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1 Introduction

Pomelo (Citrus maxima Merr.) is widely grown in South China
as a crucial cash crop. It is rich in many nutrients and beneficial to
human health!. As a kind of citrus, pomelo is deliciously sweet and
sour and favored by consumers. Over the years, consumers have
had increasingly stringent requirements for fruit quality, especially
for internal attributes®. Soluble solids content (SSC) is an important
index to evaluate the flavor of pomelo, which directly affects
consumers’ purchasing decisions”. Consequently, sorting according
to the value of SSC is urgently needed in the process of postpartum
processing and commercialization to help increase the added value
of pomelos.

For the internal quality inspection of fruit, the techniques used
in the existing research are near-infrared spectroscopy (NIRS)¥,
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NIRS-based systems such as multispectral and hyperspectral
imaging®, nuclear magnetic resonance imaging'®, X-ray computed
tomography’, acoustic vibration®™. Visible and near-infrared
spectroscopy (Vis-NIRS), an efficient and pollution-free technique,
has been utilized for SSC assessment for many years®'"..

The ‘diagnostic, window’ at 700-900 nm provides the greatest
signal-to-noise ratio for the transmittance mode, and it provides a
means of obtaining internal information about fruit with thick
peel. For citrus, exocarp, and endocarp were found to contribute
mostly to the diffuse reflectance spectral'”, thus the transmittance
mode was more applied to the internal quality detection of citrus,
such as oranges'™'*. For large fruits with thick rinds, such as
watermelon and melon, transmittance spectral detection has also
been used to evaluate the internal qualities™'>'?. However, pomelo
contains a multi-layer structure with endocarp, exocarp, and pulp.
The endocarp has a particular structure of gradient foam and fiber
bundles with a thickness of approximately 1.5 cm!”. The complex
multi-layer tissue structure and large-size thick peel lead to low
spectral intensity and poor signal-to-noise ratios. These problems
would be more prominent in in-line rapid detection, which would
affect the stability of the spectra and thus the prediction models.
According to the literature search, there are few reports on the in-
line and non-destructive detection of SSC in pomelos.

Establishing a stable and robust statistical model requires
representative data sets. Outliers that are incorporated into a
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multivariate calibration model can significantly reduce the
performance of the model™. In the spectral modeling of
chemometrics, there are two reasons for outliers. One of them is the
spectral anomaly (X). Light leakage, specular reflection, and sample
abnormality during the spectra acquisition, especially in in-line
detection, would cause spectral profile distortion. Therefore, the
probability of spectral anomalies is a way to evaluate the stability of
the spectral acquisition system. The other one is the response outlier
(Y). In partial least squares regression (PLSR) models, the response
is usually required to be continuous and obey the normal
distribution”. Outliers of Y would produce leverage lead to
deviation in variable extraction and distort the outcome and
accuracy of a regression®?". The Monte Carlo sampling (MCS)
method could help to reduce the risk that the masking effect brings
about and provide a feasible way to detect different kinds of outliers
using the distribution of prediction errors of a test sample resulting
from a population of sub-models®?*.,

The robustness of the model and the reproducibility of the
results are the key to the successful application of the model.
However, the variabilities of biological properties such as different
seasons, origins, cultivars, and storage conditions have great
influences on the robustness of models. Because different batches of
samples may have differences in SSC, weight, ripeness, and other
attributes. Increasing the range of data sets to make them
sufficiently representative can increase the robustness of the
model®!. However, a large number of experiments are time-
consuming and laborious. Moreover, the wavelength selection and
model updating methods have been reported to address model
performance in external validation***". Wavelength selection could
extract key wavelengths and eliminate the interference of redundant
information®. The model upgrading method could establish the
correlation between the existing data model and external data,
modify the model parameters, and prevent local overfitting. For the
model transfer or model upgrading method of biological diversity,
Fan et al.” reported the slope and bias correction method to correct
the deviation of model prediction from data in different years.
Mishra et al.””’ modified the SSC prediction by variable selection
and recalibration to reduce the bias from —0.62% to 0.07% and the
RMSEP from 0.90% to 0.63%. Sun et al.” achieved robustness to
temperature change of models for intact mango fruit dry matter
content with six methods in which the external parameter
orthogonalization obtained the best result with RMSEP of 1.05%
w/w. Appropriate external validation is necessary to test the
robustness of calibration models. Meanwhile, selecting a subset of
new samples to establish its association with the main model would
help to improve the performance of external validation.

Overall, the aims of this study were the in-line detection system
for pomelo and the robust calibration model for the detection of
SSC based on Vis-NIRS. The main work carried out was as follows:
1) to test the in-line detection prototype system and evaluate the
performance compared with the off-line system; 2) to establish
PLSR calibration models for SSC combined with three methods of
wavelength selection; 3) to evaluate the model robustness by the
external validation in a different year; 4) to correct the deviation of
external validation using model updating methods.

2 Materials and methods

2.1 Spectra acquisition
2.1.1 In-line detection system
An original transmittance system for in-line detection was

designed with fruit cup conveying and a double-layer parallel light
source, as shown in Figure 1. It was composed of a light source
assembly, transmission unit, and electronic control unit. The light
source assembly was composed of two light boxes in parallel
divided into upper and lower layers. The light boxes were arranged
on the adjusting mechanism with the angles adjustable. The light
box contained four 150 W halogen tungsten lamps inside and two
fans outside to dissipate heat. The two groups of light source
assembly were symmetrically arranged on both sides of the
conveyor belt. In other words, 16 halogen lamps were used as the
initial incident light. The system adopted partial-transmittance mode
with photons passed through Pomelo, entered the collimator below,
and was captured by the spectrometer (QE65pro, Ocean Optics,
USA). The laser trigger was used to trigger the spectrometer
collecting signals when the fruit cup passed through. According to
the demand for productivity, the speed of the conveyor belt was set
at 1.5 m/s.

Light source

Adjusting
mechanism

. Fruit cup Electric closet

Schematic diagram of in-line detection system
for pomelo

Figure 1

2.1.2  Off-line detection system

In previous studies, average spectra of multi-point detection
could effectively eliminate the influence of light distribution on the
model®”. The off-line spectra were collected by a semi-transmission
system with a rotatable fruit cup, as shown in Figure 2.

Fan Lens barrel

Shutter )
Rotating stage

Collimator

Figure 2 Schematic diagram of off-line detection system
for pomelo

Briefly, the pomelos were placed on the fruit cup with the navel
down. A 150 W tungsten halogen lamp was horizontally shining on
the equatorial surface of pomelos. The photons passed through the
pomelo and were received by the optical fiber collimator at the
bottom of the fruit cup. Then they were transmitted by an optical
fiber (P1000-2-Vis-NIR, Ocean Optics, USA) to a commercial fiber
optic spectrometer (QE65pro, Ocean Optics., USA). The pomelo
rotated around the vertical axis on the rotating stage, with intervals
of 90° degrees. Four spectra of each pomelo were collected and
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averaged.
2.2 Samples and SSC measurement

Pomelos of the cultivar Guanximiyou (GX) were picked from
an orchard (116.65°N, 24.37°E) in Meizhou, Guangdong, China. A
total of 335 samples from three batches in three years were used for
the SSC evaluation. The first batch (off-line detection) was picked
in September 2019 and the second batch (in-line detection) was
picked in September 2020. These two batches were used to establish
the calibration models. The third batch was picked in September
2021 and acquired the spectra on the in-line system and it was used
for external validation. Before the data acquisition, to eliminate the
influence of the temperature, all samples were stored in a constant
temperature and humidity chamber ((25+1)°C, 75%) for 48 h in the
laboratory at Zhejiang University, China.

The SSC was measured by a digital refractometer (PAL-
BXJ|ACID F5, ATAGO., Japan). Pomelos were first cut along the
equatorial plane. The juice vesicles of the equatorial plane near the
navel were taken out, and squeezed juice with a juicer, then dropped
into the refractometer after filtering through the filter screen. As the
unsymmetrical distribution of composition, the SSC was measured
and averaged at three regions every 120° along the cross-section.

2.3 Spectral analysis and modeling
2.3.1 Spectra preprocessing

In this study, the spectral intensity from different systems and
different  batches was  calibrated by a  customized
polytetrafluoroethylene (PTFE) cylinder. The relative transmittance
(RT) was calculated for spectral modeling by the following
equation:

I,-D
I.-D

RT =

x 100% (1)

where, 7, is the transmittance intensity of PTFE reference; I is the
transmittance intensity of samples; D is the dark current intensity of
the spectrometer. Subsequently, the standard normal variate
(SNV)E! was used to eliminate amplitude differences.
2.3.2 Partial least squares regression

Partial least square regression (PLSR) is based on the

Changeable size moving window

computation of the optimal least-squares fit part of a correlation or
covariance matrix to relate spectral data to quality attributes®.
Cross-validation provides a way to find the best LVs and prevent
overfitting. In this study, the optimal combination was chosen by 5-
fold cross-validation, in which the maximum variable search was
20. Subset selection according to Kennard-Stone (KS) strategy™
was used to split into two subsets: the calibration set (75%) and the
prediction set (25%).
2.3.3  Outlier detection

Monte Carlo Sampling (MCS) method calculates the mean
value and standard deviation of the prediction residuals of samples
by multiple random sampling. In this study, combined with
analyzing the spectral profiles and the SSC histogram distribution,
outliers were manually selected through the scatter diagram
distribution of MCS output. The number of outliers was strictly
controlled within 5% of the sample size which belongs to small
probability events in statistical analysis. The MSC ran under 5000
iterations with the ratio of the sample of 0.75. After removing
outliers, the samples were re-divided into calibration set (75%) and
prediction set (25%).
2.3.4 Evaluation of models

The determination coefficient of calibration (R?), root mean
square error of calibration (RMSEC), determination coefficient of
prediction (R2), root mean square error of prediction (RMSEP),
residual predictive deviation (RPD) for the prediction set, and root
mean square error of validation (RMSEV), were used to assess the
predictive ability of models.
2.4 Wavelength selection
24.1 CSMW-PLSR

Changeable size moving window PLSR (CSMW-PLSR) aims
at selecting the optimized interval from all possible spectral
intervals within an informative region®. It moves a window across
the whole wavelength range and builds a PLSR model for each
window, as is shown in Figure 3. The windows with low root mean
squared errors of fitting (RMSEF) values could be selected to build
a final model.

Min width l H:l = ‘m

Select wmdow size

=[N

Width+1 .

[ I = |
" =
E | Movmg window |
S 3
.- l . "g | Pretreatment |
)
az | Cross validation |
El 3
5 Record data |

Figure 3  Scheme for explanation of CSMW-PLSR

Compared with the CSMW-PLSR of Du et al.P% some
improvements were made to obtain a stable wavelength interval, as
shown in the flow chart in Figure 3. Firstly, the pretreatment results
of SNV were changeable in different window ranges. Therefore,
spectral pretreatment was added to the cycles of window scanning
instead of before importing the spectra. Secondly, The minimum
root mean square error of cross-validation (RMSECV) of 5-fold
cross-validation was used as the basis for model selection to prevent
overfitting and select the best LVs. The effective spectral
wavelength range of pomelo was 500-1000 nm, with a total
wavelength of 675. In the CSMW-PLSR selection, the minimum
width was set to 300, and the maximum was 650.

242 RF-PLSR
Random frog is an efficient variable selection approach based

on the reversible jump Markov Chain Monte Carlo-like for
applications to gene selection and disease classification™. It is
searching for a model space through the realization of both fixed-
dimensional and trans-dimensional jumps between different models.
A pseudo-MCMC chain is calculated to determine the selection
probability of each variable to measure the relevance of variables,
which can be used as a variable selection criterion. In this study, the
number of iterations was set to 10 000 and the maximal number of
LVs for cross-validation was 20.
2.4.3 CARS-PLSR

A competitive adaptive reweighted sampling technique coupled
with PLSR (CARS-PLSR) is a promising procedure to eliminate the
uninformative variables and/or conduct wavelength selection for

building a high-performance calibration model®. This method
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starts by building a full model with all variables included, followed
by iteratively eliminating variables of the least importance in a
backward manner. The number of variables to eliminate at each
iteration is controlled by an exponentially decreasing function and
an adaptive reweighted sampling technique. At each iteration,
performance evaluation is conducted for a subset of variables rather
than for individual variables. The number of MCS runs was set to
100 and the number of variables to be selected was determined by 5-
fold cross-validation.

The procedures of all modeling were written and performed in
Matlab R2019b (Mathworks, USA) with the
libPLS1.98P".

2.5 Model updating methods
When the samples to be predicted are measured on a different

toolbox of

instrument or under differing environmental factors, the original
models might be invalid. Various model transfer methods have been
developed to enable a calibration model to be effectively transferred
between two systems®”. However, correcting the prediction
deviation caused by different sample attributes on the same system,
this step was called ‘model updating’.

Latent wvariables updating (LVU): As it was known, the
selection of the LVs number is important when building a PLSR
model. If more variables are selected, the model will easily result in
overfitting, while the selection of fewer variables will cause
underfitting®. The general process of determining the optimal
number of LVs is cross-validation. However, the optimal LVs of
cross-validation are based on the performance of the original data.
For external validation, it might be inapplicable. According to this
characteristic of PLSR, the LVU method was proposed to correct
the optimal LVs for the external validation data. The specific
process is as follows:

1) Select several representative new samples (such as 5, 10, 20
samples);

2) Calculate the predicted values and RMSEPs using the
coefficients of the original model with different numbers of LVs
(from 1 to the maximum LVs of cross-validation);

3) Select the number of LVs with minimum RMSEP of new
samples as the model parameter to predict the remaining samples.

Recalibration method: Recalibration is to modify the loading
matrix and score matrix in the original model by introducing a small
number of new samples®”. This method needs to carry out the
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modeling process again and select a new number of LVs through
cross-validation. In this study, 10 samples were selected randomly
and the number of LVs was determined by 5-fold cross-validation.

This is a process of reselecting LVs. Like the minimum
RMSECYV in cross-validation was used for modeling, the minimum
RMSEP of external data was used for the correction of overfitting.
The process of LVU is different from the recalibration method in
that recalibration recalculates the loading and score matrix of a new
model, while LVU only reselects LVs with the original coefficients.
In other words, LVU attempts to use the original model to interpret
external data, rather than directly modify its coefficient matrix. In
this study, 10 samples were used to compare the two model
updating methods.

3 Results and discussion

3.1 Statistics of pomelo attributes

The attribute statistics of pomelos in three batches are listed in
Table 1. Among them, the SSC of pomelos harvested in September
2020 was significantly different. The SSC ranged from 6.90% to
17.00%, and the mean value was 13.55%. It was larger than the
other 2 batches. Meanwhile, the validation set has a small standard
deviation which was only 0.49%. In addition, samples in the
external validation set had larger sizes and heavier mass compared
with Batch 1 and Batch 2 which might make external validation
more difficult with low spectra intensity.

Table 1 Descriptive statistics of the pomelo datasets in
three years
Batch Data set Harvest  Data No. of Weight/g*  SSC/%

year acquisition pomelos
1 Off-line modeling 2019.09 Off-line 125
2 In-line modeling 2020.09 In-line 110 1187+120° 13.55+1.17*
3 External validation 2021.09 In-line 100 1595+166" 10.79+0.49°

Note: * ‘+” indicates the mean value and standard deviation; lower case letters
indicate the significant differences between the three batches (p<0.05); SSC:
Soluble solid content.

995+122¢ 10.96+1.05°

3.2 Spectra profile

Due to the strong absorption of light by tissues, only in the
range of 500-1000 nm has acceptable signal intensity. Therefore,
the relative transmittance in the range of 500-1000 nm was
employed to establish the models. The mean spectra in the range of
500-1000 nm of each batch are shown in Figure 4.
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In-line r
Validation

Relative transmittance/%
:

e
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b. Preprocessing with SNV

Note: SNV: Standard normal variate.

Figure 4 Spectra profile of raw data and preprocessing with SNV in different batches

As shown in Figure 4, there are two transmittance peaks at
712 nm and 808 nm for all spectra, and the peak at 808 nm is higher
than that at 712 nm. The absorbance peak in the range of 720-

750 nm might be relevant to sugar including the third overtones of
OH stretching vibrations at 740 nm". The visible light in the range
of 650-675 nm might be absorbed by the pigments such as
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chlorophylls, and the short wave near-infrared light around 950 nm
is related to water absorption, so the RT signals in these ranges are
weak. The difference in spectral intensity mainly came from optical
path length changes caused by sample size. The preprocessing
method of SNV could standardize the spectra and eliminate the
difference in light intensity. After pretreatment, the spectral peak
positions of different batches were the same. The peak difference
near 720 nm might be caused by the biological variabilities of
pomelos.
3.3 Outliers detection

The boundary of outliers was determined manually by
observing the error distribution of MCS. In this study, the in-line
system was the focus of attention. Therefore, outlier detection of the
in-line data set was taken as an example to describe the screening
process. As shown in Figure 5a, the red circle shows the outliers in
the error distribution map. Among them, No. 37, No. 91, and No. 1
show large mean error, while No. 9, No. 68, and No. 57 show
excessive standard deviation of error. Figure 5b shows the spectral

profiles of the six outliers and the average spectrum. It could be
found that samples No. 9, No. 68, and No. 57 have spectral
distortion while the other three spectra are normal. Similarly, in
Figure 5c, No. 1, No. 91, and No. 37 with larger mean values are
outliers of SSC. Therefore, these six points were eliminated. It is
worth noting that there were three spectra showing anomalies, of
which the baseline offset of No. 57 and No. 68 might be caused by
light leakage of the system. However, the spectrum of No. 9 was
only abnormal in the spectral shape, which could be derived from
the attribute difference of the fruit itself. In other words, only two
abnormal spectra were caused by the instability of the in-line
system and the probability of abnormal spectra of the in-line system
was 1.8% (2/110). It is acceptable as a prototype system. In
addition, the outliers of SSC were eliminated to prevent leverage in
the model of existing data. When the data set was wide enough to
cover its SSC value, it could be added to the model. Therefore,
when data sets were mixed, MCS procedures need to be repeated
instead of simply merging outliers.
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Figure 5 Monte Carlo Sampling (MCS) outlier detection of the in-line detection set

3.4 PLSR models combined with different wavelengths
selection methods

The wavelength optimization results of different data sets might
be slightly different, but the method and process are the same. To
avoid repetition, the wavelength optimization process of in-line
models was described as an example.
34.1 CSMW-PLSR models

CSMW-PLSR adopted the window width ranging from 300 to
650, the moving step was 1, and the window size iterated with 1.
The window moved from the first point until it covered the entire
band. As shown in Figures 6a and 6b, the minimum RMSECV and
optimal LVs with different window widths and positions were
recorded and drawn on the contour map. In Figure 6a, there is a
regular gradient change in the contour map, in which the value of
RMSECV would decrease with the increase of window width and
backward position. When the window width was small, such as 300-
350, the window in the dark blue area started near the wavelength of
650 nm. Meanwhile, as the window size increases, the starting
position of the dark blue area moves forward. It showed that the
effective wavelength was distributed in the second half of the
spectral range which was the near-infrared band. In Figure 6b, the
distribution of optimal LVs also shows regionalization. When the
window size is small, LVs change greatly in different window
positions. When the window becomes larger, LVs tend to be stable.
It should be noted here that when the RMSECYV value is close, the
smaller the LVs value is, the more stable the model is. Because the
large number of LVs brings a risk of overfitting. Finally, the red

circle marked the best point with the minimum RMSECV was
0.4%, optimal LVs was 8, and a window width was 332. The
selected wavelength range was 711.54-956.48 nm, as shown in
Figure 6d. This band covers wavelengths of 740 nm and 950 nm
which are related to SSC and water. The PLSR model established
using the selected band is shown in Figure 6¢c. The RMSEP was
0.490%, and RPD was 2.01.
3.4.2 RF-PLSR models

The results of RF wavelength selection are shown in Figure 7.
Figure 7a shows the selection probability of each wavelength.
Among them, the wavelengths around 650 nm, 740 nm, and 900 nm
had higher selection probabilities. Moreover, the effective
wavelength and the noise wavelength were mixed with no obvious
boundaries. Therefore, the probability of wavelength selection was
ranked and the more important wavelengths were selected
successively for cross-validation iterative calculation. With the
number of selected wavelengths increased, the changes in minimum
RMSECV are shown in Figure 7b. When the number of selected
wavelengths reached 120, the optimal value appeared. After
that, the wavelength mixing brought noise information and
reduced the performance of cross-validation. The selected
wavelengths were dispersed over the entire wavelength range, as
shown in Figure 7d. Among them, wavelength aggregation
appeared in the main absorption peak bands such as 650, 730, 900,
and 950 nm. The RF-PLSR model established using the selected
wavelengths is shown in Figure 7c. The RMSEP was 0.339%, and
RPD was 2.90.
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Figure 7 Results of wavelength selection by RF-PLSR of in-line data

3.43 CARS-PLSR models

Figure 8 shows 5-fold RMSECV values (Plot @), and the
regression coefficient path of each variable (Plot ») with the
increasing of sampling runs from one CARS running. The
RMSECYV values descend before 38 runs which should be ascribed
to the elimination of uninformative variables, and finally increased
fast because of the loss of information caused by eliminating some
key variables from the optimal subset (denoted by asterisks). The 77
selected wavelengths selected by CARS-PLSR are shown in
Figure 8d. The wavelength distribution was more scattered than RF-
PLSR except that the aggregations were around 880 and 920 nm.
The number was less than that of RF-PLSR, however, the model
performance of CARS-PLSR was better than the RF-PLSR with
RMSEP of 0.204 % and RPD of 4.821, as shown in Figure 8c.
3.5 Comparison of PLSR models with wavelength selection

Table 2 lists the performances of PLSR models established
with different wavelength selection methods. Both off-line detection

and in-line detection have achieved good model performance.
Among them, the RMSECVs of the in-line models were between
0.287%-0.496%. The model performance was slightly better
than that of the off-line models with RMSECVs of 0.375%-
0.572%. In other words, the in-line detection prototype system
could obtain stable spectral data and be used to establish a
prediction model equal to or slightly better than off-line detection.
Meanwhile, the mixture model combining the two data sets could
get the model performance of RMSECVs in 0.461%-0.586%. The
model accuracy decreased with the data increased. It should be
noted that the mixing makes the SSCs have a wider distribution and
the robustness and representativeness of the model might improve.
However, biological variabilities and system differences were
mixed in, which reduced the accuracy of the models. The Models
established by RF-PLSR and CARS-PLSR obtained better
performances than the CSMW-PLSR. The best model was obtained
by the CARS-PLSR in in-line detection, with RMSECV of
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0.287%, R; of 0.958, RMSEP of 0.204%, and RPD of 4.821.
Moreover, ranking the numbers of selected wavelengths, CSMW-
PLSR>RF-PLSR>CARS-PLSR. All models obtained good
performance for the non-destructive prediction for the SSC in
pomelo. The PRDs of most models were obtained greater than 2.
With methods of RF and CARS, some PRDs exceed 3 or even 4.

The wavelength selection method significantly improved the
performance of models in the internal calibrations and predictions.
The prediction abilities were satisfactory with RMSEPs between
0.204% to 0.570%. The prediction accuracy was similar to the
SSC detection results of Citrus reported in previous literature, such
as oranges!"**’.
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Figure 8 Results of wavelength selection by CARS-PLSR of in-line data
Table 2 Model performance of PLSR with different wavelength selection methods in the range of 500-1000 nm
Batch Samples (Outliers) Modeling methods EWs (Proportion) LVs RMSECV/% R% RMSEC/% R% RMSEP/% RPD
PLSR 675 (100%) 13 0.572 0.807 0.419 0.719 0.447 1.900
. CSMW-PLSR 304 (45%) 12 0.444 0.885 0.323 0.871 0.302 2.814
Off-line 125 (2)
RF-PLSR 100 (15%) 16 0.447 0.902 0.298 0.915 0.245 3.466
CARS-PLSR 61 (9%) 17 0.375 0.924 0.263 0.856 0.336 2.529
PLSR 675 (100%) 11 0.496 0.798 0.376 0.781 0.476 2.069
I 110 (5) CSMW-PLSR 332 (49%) 8 0.456 0.776 0.395 0.753 0.490 2.008
n-line
RF-PLSR 120 (18%) 13 0.404 0.907 0.255 0.881 0.339 2.902
CARS-PLSR 77 (11%) 17 0.287 0.957 0.173 0.958 0.204 4.821
PLSR 675 (100%) 15 0.586 0.920 0.446 0.878 0.570 2.801
. CSMW-PLSR 331 (49%) 13 0.520 0.927 0.424 0.889 0.530 3.013
Mixture 235(7)
RF-PLSR 59 (9%) 15 0.499 0.933 0.407 0.928 0.427 3.735
CARS-PLSR 20 (3%) 12 0.461 0.921 0.443 0.931 0.434 3.673

Note: EWs: Effective wavelengths; LVs: Latent variables; CSMW-PLSR: Change size moving window PLSR; RF-PLSR, random frog PLSR; CARS-PLSR, competitive

adaptive reweighted sampling PLSR. Same below.

However, due to the selection strategy of iterative optimization,
the optimization results of all methods showed randomness, which
is usually related to the number of iterations and the data structure
of the sample itself. Meanwhile, the model has a risk of overfitting
by selecting the minimal RMECYV to screen the optimal LVs in the
cross-validation. In fact, except for the CSMW-PLSR models in in-
line detection and mixture data set, all other models have appeared
with RMESPs lower than RMSECVs.
external validation to evaluate their practicality.

3.6 External validation and model updating

Table 3 describes the performance of external validation before
and after model updating with different wavelength selection
methods. For the external validation without model updating, the
best result was obtained by the CSMW-PLSR of the in-line model
with RMSEV of 0.920%. The results of in-line models were better

These models needed

than mixture models, and mixture models were better than off-line
models. However, all models obtained high prediction bias with a
mean RMSECV of 2.51%. There were many reasons for the
deviation, such as biological variability and the difference in
detection systems. This result could not meet the prediction
requirement that the residual of SSC in in-line detection should be
less than 1%. Therefore, it was necessary to update the models.

As is known, model updating depends on representative
samples. However, it is difficult to manually and non-destructive
screen samples with representative internal qualities. Therefore, ten
samples were randomly selected and applied to both model updating
methods. Figure 9 shows the LVs selection process of the LVU
updating method. RMSEVs fluctuated violently with the number of
LVs but showed a trend overall. Interestingly, RMSEVs first
decreased and then increased in the in-line model and mixture
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model. However, one or two LVs obtained the best performance in
the off-line models. It showed that the number of LVs has a great

impact on the prediction performance of the model. This might be
related to the interpretation degree of LVs to the model.

Table 3 External validation performance of PLSR models with wavelength selection and model updating methods

Original models Updated models
Batch Modeling methods EWs (Proportion) N 0 LVs of RMSEV with RMSEV
LVs RMSECV/%  RMSEV/% recalibration recalibration/% LVsof LVU with LVU/%
PLSR 675 (100%) 13 0.572 4421 13 1.384 1 0.664
Ofti CSMW-PLSR 304 (45%) 12 0.444 4.390 11 1.817 1 0.599
-line
RF-PLSR 100 (15%) 16 0.447 4.970 16 1.696 1 0.613
CARS-PLSR 61 (9%) 17 0.375 2.176 18 1.601 2 0.710
PLSR 675 (100%) 11 0.496 1.287 12 0.923 16 1.385
Inci CSMW-PLSR 332 (49%) 8 0.456 0.920 8 0.864 8 0.920
n-line
RF-PLSR 120 (18%) 13 0.404 1.722 12 0.978 6 1.047
CARS-PLSR 77 (11%) 17 0.287 1.748 12 0.965 12 1.350
PLSR 675 (100%) 15 0.586 1.854 16 1.279 17 1.576
Mixt CSMW-PLSR 331 (49%) 13 0.520 1.790 12 1.263 11 1.479
ixture
RF-PLSR 59 (9%) 15 0.499 2.027 14 1.311 9 1.197
CARS-PLSR 20 (3%) 12 0.461 2.757 10 1.279 7 1.010
Note: LVU, Latent variables updating.
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Figure 9 Plots of RMSEV with increasing numbers of LVs (1-20) using 10 samples randomly selected in the external validation set

Both methods reduced the RMSEV of external validation data
in each model, as listed in Table 3. However, the correction effects
of the two methods showed differences due to their different
principles. First, recalibration was to build a new coefficient matrix
by mixing in new samples. Therefore, the selection of optimal LVs
was similar to the original model. Its correction effect in the in-line
model was better than that of LVU. The optimal performance was
obtained by the CSMW-PLSR model of in-line data with RMSEV
0f 0.864%. In contrast, LVU optimized the number of LVs to match
the original model with external validation data. This method
corrected the overfitting or underfitting phenomenon and attempted
to use the LVs of the original model to explain the external data. It
showed a better correction effect in off-line models. The corrected
RMSEVs of off-line models were less than 0.710%, and the
minimum was 0.599% with the CSMW-PLSR model. For the

© Calibration

12+ * Validation

mixture models, the correction effect was not as good as the oft-line
and in-line models, and the results of the two methods were similar.
This might be caused by unstable factors in the two data sets that
were added at the same time.

The wavelength selection methods performed randomness
in the results of different update methods and different data sets.
In contrast, CSMW-PLSR showed better robustness in in-line
models and obtained the best performance in the off-line model
with LUV correction. The best performance of all models was the
CSMW-PLSR of the off-line model after LVU correction with
RMSEV of 0.599%. Figure 10 shows the results of the performance
of the best model. The residuals of 100 samples of external
validation could meet the needs of practical applications of in-
line detection with 91% residuals less than 1.0% and 60.0% less
than 0.5%.
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a. Scatters of measured values and predicted values
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b. Stem plots of residuals of samples
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Figure 10 Results of the best performance of external validation using model updating methods
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4 Discussion

Compared with in-line detection, off-line static spectra
acquisition was stable and controllable. However, due to the
differences in operation state and integration time, the model or data
in the off-line system was difficult to be directly applied to the in-
line detection. In this study, the in-line system was designed based
on the off-line system. The two systems had the same hardware
composition, including fruit cup, collimator, tungsten halogen lamp,
optical fiber, spectrometer, etc. Therefore, the off-line model was
used as a standard to evaluate the performance of the in-line system.
Moreover, to match the symmetrical illumination in in-line
detection, the average spectrum with multi-point detection in the off-
line system was used for modeling. Finally, the in-line detection
prototype system could obtain stable spectral data with a spectral
anomaly rate of less than 2% and could be used to establish a
prediction model equal to or slightly better than the off-line
detection. The transmission speed of 1.5 m/s fully met the needs of
real-time detection. Moreover, the mixture model has good
performance that proved the homology of data in the two systems.
An exciting finding was that the off-line model could predict the in-
line data through the LVU correction methods. This indicated that
the laboratory data could participate in the improvement or even be
directly applied to the in-line detection system. This was of great
significance to reduce the modeling labor and improve data
utilization of fruit.

The wavelength selection methods could find the internal law
and improve the interpretability of models. For the CSMW-PLSR,
the optimized band (711.54-956.48 nm) was covered the main
absorption peaks of water and SSC, which was consistent with the
prior knowledge of Vis-NIRS detection. However, the noise
information might be mixed into the CSMW model since the strong
correlation between adjacent wavelengths in the wide wavelength
band. Therefore, CSMW was worse than CARS and RF in the
improvement effect. The optimal wavelengths selected by CARS
and RF usually appeared independently and distributed at different
absorption peak positions. It is worth mentioning that both CARS
and RF selected the wavelengths in the baseline part (500-550 nm
and 960-1000 nm), such as 500 nm in CARS and 986 nm in RF.
The baseline band was mainly dark noise in the transmittance
spectra with a low signal-to-noise ratio. However, after pretreatment
with SNV, the spectra were normalized to standard spectra with
mean values of 0 and standard deviations of 1. At the same time, the
dark baseline was given a value, which might be related to the
spectral mean value and spectral change trend. These wavelengths
might be beneficial for the models.

For the external validation, the model improvement of
wavelength selection methods showed indeterminacy. This might be
due to the overfitting caused by the large number of LVs. The
model based on a small amount of data would prone to overfitting.
When validated in a broader data set, the overfitting phenomenon
would be amplified. Because, as the number of LVs decreased, the
external validation performance improved. Especially when LVs
were less than 10, the performance of external validation was
relatively better. Therefore, it was recommended that the LVs
should be controlled within 10.

The LVU method eliminates overfitting or underfitting in the
local data modeling by correcting the number of LVs in the original
models. The LVU method was verified in all models in which
performed best in off-line models. Since the LVU was modified

original models, these models needed to be well interpretable to
external data. It is worth mentioning that the good performance of
the LVU method for correcting off-line data might be related to the
matched SSC ranges with the external validation set (the SSC
ranges are listed in Table 1). For the in-line data set, LVU also
worked, but it was not as effective as the off-line data. Ascribed to
the new model mixing with information from external data, the
recalibration method performed better than LVU for the model with
SSC mismatch. In addition, the correction performance of
recalibration was related to the selected new samples. The more the
better, the more representative the better. It was a continuous
process of change. However, for LVU, the correction result was
discrete and the optimal solution was unique for a specific data set.

5 Conclusions

To achieve the real-time and nondestructive prediction of SSC
in pomelo, this study explored the process from model optimization,
external validation to model updating. The outlier detection method
of MCS was used to eliminate abnormal samples and evaluate the
stability of in-line spectra acquisition. The spectral anomaly rate of
in-line detection was less than 2%. Subsequently, the wavelength
selection methods significantly improved the performance of
models in internal prediction with RMSEP of 0.240%-0.570%.
However, large prediction deviations caused by overfitting were
shown in external validation from a different year. Finally, a model
updating method called LVU was proposed and verified for
correcting the bias of external validations. Compared with
recalibration, LVU used the original model to interpret external
data, which was more suitable for data with SSC matched. Overall,
the best external performance of inline detection was obtained by
CSMW-PLSR-LVU with RMSEV of 0.599% in a transmission
speed of 1.5 m/s. The residuals of 100 samples of external validation
could meet the needs of practical applications of in-line detection
with 91% residuals less than 1.0% and 60.0% less than 0.5%.The
methods and models are of great significance for the internal quality
detection of large fruit with thick rinds.
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