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DMT: A model detecting multispecies of tea buds in multi-seasons
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Abstract: In China, tea products made from fresh leaves characterized by one leaf with one bud (1L1B) are classified as
“Famous Tea”, which has better taste and higher economic value, but suffers from a labor shortage. Aiming at picking
automation, existing studies focus on visual detection of 1L1B, but algorithm validation is limited to a specific variety of tea
sprouting in a certain harvest season at a certain location, which limits the engineering application of developed tea picking
robots working in various natural tea fields. To address this gap, a deep learning model DMT (detecting multispecies of tea)
based on YOLOX-S was proposed in this paper. The DMT network takes YOLOX-S as a baseline and adds ECA-Net to the
CSP Darknet and FPN of YOLOX-S. The average precision (AP), precision, and recall of DMT are 94.23%, 93.39%, and
88.02%, respectively, for detecting 1L1B sprouting in spring; 93.92%, 93.56%, and 87.88%, respectively, for detecting
1L1Bsprouting in autumn. These experimental results are better than those of the five current object detection models. After
fine-tuning the DMT network with another dataset composed of multiple tea varieties, the DMT network can detect 1L1B for
different varieties of tea in multiple picking seasons. The results can promote the engineering application of picking automation

of fresh tea leaves.
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1 Introduction

Tea is a traditional drink that originated in China, and it
possesses excellent health and economic values'. According to the
various modes of harvesting fresh tea leaves and postharvest
processing, tea is usually classified as bulk tea or famous tea.
Harvesting equipment for bulk tea adopts non-selective mechanized
harvesting methods®”. Famous tea is famous for its higher
economic value and better taste, becoming a representative of high-
quality tea across China™. The famous tea product is made of fresh
tea leaves featuring one leaf with one bud (1L1B). Famous tea has a
better taste but is difficult to pick. The picking process completely
relies on hands. The aging of the population and the continuous
transfer of rural labor to the cities has resulted in labor shortages for
picking fresh leaves, hence, in turn, has restricted the development
of the famous tea industry.

Recently, facing these challenges, researchers have been
focusing on applying machine vision technology to identify the
tender buds of the famous tea and subsequently accelerate the
mechanization and automation of famous tea harvesting. Zhang et
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al.”! used the Bayesian posterior probability criterion to monitor the
buds of purple rose tea trees in real-time in April, and they
estimated the best picking time for the buds accordingly. Chen et
al.'" used a binary search tree to describe the shape of 1L1B, and a
support vector machine (SVM) classifier graded the quality of fresh
tea leaves after harvesting, which minimized the mixing of old
leaves and broken leaves with the fresh leaves of raw materials that
are harvested using mechanical tea-picking machines. Lu et al.'!
proposed an improved Artificial Color Contrast/Principal
Component Analysis (ACC/PCA) method to solve the impact of the
changes in illumination on tea bud detection. Similarly, Zhang et
al.'" proposed an improved watershed function to suppress the
adverse impact of different illumination on the segmentation of
famous tea buds, and to obtain a better segmentation effect. Chen et
al."™! used Region-based Convolutional Neural Network (R-CNN)
and Fully Convolutional Network (FCN) models to identify autumn
tea with one bud and two leaves in November 2017 and July 2018
along with its picking points, and they determined the three-
dimensional coordinates of the picking points. Li et al.' used
YOLOV3 to identify the buds of autumn tea in September that were
captured by an RGB-Depth (RGB-D) camera, and they estimated
the 3D coordinates of the bud-picking points in the depth map
corresponding to the bounding box. Yang et al.'! used the SVM
algorithm and the YOLOV3 target detection network to identify the
tender buds of famous tea, and they completed the picking
experiment on the Delta parallel manipulator. Xu et al.'” proposed a
deep learning model for tea bud detection, which maximizes the
rapid detection capability of YOLOV3 and the high-precision
classification capability of DenseNet201 to detect tea buds.

The above studies adopt a variety of classification methods in
classic image processing such as SVM, watershed function, binary
search, and quadtree!”'®. They also use different deep learning
models, such as R-CNN, YOLOV3, and FCN to improve the
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accuracy and recognition of tea bud detection. In China, the picking
secason of green tea starts in late March and ends in late August,
including spring tea (from March to April), summer tea (from May
to June), and autumn tea (from July to September). The main tea
varieties include No. 43 Longjing, No. 108 Zhongcha, and Cuifeng
and there are differences in the physical characteristics of fresh
leaves between different seasons and tea varieties. Existing studies
only involve a single tea variety in a specific picking season (or
unspecified). Therefore, the detection effect of the models is
unknown and the accuracy may be reduced for different picking
seasons or different picking varieties. In addition, the size of the tea
bud object is small, and the detection object is relatively close to the
surrounding environment, so the deep learning model may not be
applicable. Previous research used popular learning models in
combination with classical digital image processing algorithms
without directly improving the model structure, limiting the
generalization ability of the detection model and hindering the
integration of tea bud target detection to picking automation.

This study proposed an object detection model, the DMT
network (detection of multispecies of tea), which can identify 1L1B
of multispecies of famous tea during the three picking seasons of
spring, summer, and autumn in the natural environment. The
manuscript is organized as follows. First, the addition of the ECA-
Net!"! lightweight attention module to the original YOLOX-S model
is presented. Second, the use of the No. 43 Longjing tea dataset to
train the DMT network to detect No. 43 Longjing tea for two
picking seasons is evaluated. Finally, the MVT dataset is used to
generalize the detection ability of the DMT network.

2 Materials and methods

2.1 Dataset generation

Common deep learning models are often adapted for public
datasets, such as PASCAL VOC datasets (Figure 1a)*”. The number
of label boxes for this type of dataset image is generally only 1 to 3,
and there is a significant difference between the target and the
background features. The color, texture, and shape of tea buds in
pictures taken in the natural environment are similar to those of old
leaves, and there are usually 10-40 targets in a single picture, as
shown in Figure 1b). Therefore, conventional deep-learning models
that have achieved high-performance evaluations using various
public datasets may not be suitable for identifying fresh tea leaves
and buds. Thus, to detect the 1L1B of famous tea, it is necessary to
create a training dataset and make targeted improvements to the
existing deep-learning model.

a. Several types of pictures are arbitrarily selected from the
PASCAL VOC dataset and their annotation boxes

b. A picture of No. 43 Longjing tea with annotation
boxes from the tea dataset

Figure I Comparison between common public datasets and

homemade datasets

2.1.1 Image collection of tea buds

A total of 10 000 tea images were collected in April 2020,
April 2021 (Spring), August 2020, and August 2021 (Autumn) at
the Tea Research Institute of the Chinese Academy of Agricultural
Sciences and the Shengzhou Tea Comprehensive Experimental
Base of the Tea Research Institute of the Chinese Academy of
Agricultural Sciences (Figure 2), to create an RGB image dataset
for training and validation of the network model. The sampling
devices include mobile phones (HUAWEI Mate30, iPhonel2) and
industrial cameras (ZIVID two).

1 mile~1.61 km
[_50km _ |2

_ 5

30 mile

a. Tea Research Institute of China
Agricultural Sciences, located in
Xihu District, Hangzhou City,
Zhejiang Province, China
(coordinates 30.185883°N,
120.099789°E). The red box
shows the sampled tea fields

b. Shengzhou Tea Comprehensive
Experimental Base, Tea Research
Institute, Chinese Academy of
Agricultural Sciences, located in
Shengzhou City, Zhejiang Province,
China (coordinates 29.748373°N,
120.825306°E). The red box shows
the sampled tea fields.

Note: 1 mile~1.61 km.

Figure 2 Tea bud image collection locations

Figure 3a is an image of the fresh leaves of No. 43 Longjing tea
taken in spring. There are a few obvious differences in size and
color between the tea buds and the surrounding old leaves. Figure 3b
is an image of the fresh leaves of No. 43 Longjing taken in autumn.
Compared to the tea buds of No. 43 Longjing in spring, the color of
the buds in autumn is darker, and the texture is easily
distinguishable. This dataset is used as the main training dataset and
is referred to as the LJ43 dataset (No. 43 Longjing dataset).

A total of 1000 pictures of Cuifeng tea, 1000 pictures of No. 43
Longjing, and 1000 pictures of No. 108 Zhongcha were collected as
a multispecies small dataset named MVT dataset (Multi-Variety
Tea dataset), as shown in Figure 4. The MVT dataset is used to
examine the generalization ability of the model trained on the LJ43
dataset. The variety, quantity, sampling time, and sampling location
of the original tea images in the LJ43 dataset and the MVT dataset
are presented in Table 1 and Figure 2.
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b. Tender buds of autumn tea are
darker in color and rougher in
texture than those of spring tea

a. Compared with the
surrounding old leaves, the
young buds of spring tea
have a lighter color and
smoother texture

Figure 3 Representative images of tea buds of No. 43 Longjing tea
in spring and autumn

¢. No. 108 Zhongcha
tea photo taken in
March 2022

b. Cuifeng green tea
photo taken in August
2020 2020

Figure 4 Three different tea buds in the MVT dataset

photo taken in May

Table 1 Properties of generated datasets

Dataset Tea varieties Sampling time Number

No. 43 Longjing ipgi o 7000

LJ43 Dataset P
No. 43 Longjing August 2020 3000

: August 2021

No. 43 Longjing May 2020 1000
MVT dataset No. 108 Zhongcha March 2022 1000
Cuifeng August 2020 1000

No. 43 Longjing tea has less fuzz and the root of the bud shows
light red. Cuifeng green tea has a lot of fuzz and slender dark green
buds. No. 108 Zhongcha tea has less fuzz and is green with a hint of
yellow buds. On one hand, these different phenotypic characteristics
will hinder the detection of different tea varieties by deep learning
models, on the other hand, deep learning models trained with multi-
tea varieties data sets tend to have better generalization.

2.1.2 Dataset annotation

Both the LJ43 dataset and MVT dataset use the PASCAL VOC
dataset format. Tea classified as famous tea requires 1L1B as raw
materials. A labeling software was used to label all the areas of
1L1B in the original image. The label boxes are classified into two
categories: spring tea and autumn tea. The tea buds are significantly
different in terms of posture (Figure 5), degree of occlusion
(Figure 6), and clarity (Figure 7).

2.1.3 Data augmentation

The recognition accuracy can be improved by increasing the
number of pictures and data diversity in the dataset. Various image
processing methods were randomly combined to increase or
decrease the brightness, contrast, and color saturation, flip the
image horizontally, and adjust the aspect ratio of the original tea
pictures. Finally, the original 10 000 images of No. 43 Longjing tea
were expanded to a sample size of 60 000 images in the LJ43
dataset. A random combination application process of the data
augmentation method on the LJ43 tea dataset is shown in Figure 8.

c. Bud axis is inclined
to the left(more
common in the right
half of the tea tree)

b. Bud axis vertical
(more common on the
treetop)

a. Bud axis is inclined
to the right (more
common in the right
half of the tea tree)

Figure 5 Detected 1L1B with different postures in
the LJ43 dataset

¢. No occlusion
between the tea bud
and tea leaf

b. Partial occlusion
between tea bud and
tea leaf

a. Complete occlusion
between tea bud and
tea leaf

Figure 6 Detected 1L1B with different degrees of occlusion in the
LJ43 dataset

a. Fuzzy tea bud b. Clear tea bud
Figure 7 Detected 1L1B with different degrees of ambiguity

b. Image after increasing brightness,
increasing contrast, decreasing color saturation,
flipping the level, and increasing width

c. Image after increasing  d. Image after decreasing brightness, lowering
brightness, decreasing contrast, — contrast, increasing saturation, flipping
decreasing color saturation, level, and increasing width
and decreasing width

Figure 8 Random data augmentation
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2.2 Construction of DMT network
2.2.1 Basic structure of Network

YOLOX-S is a YOLO (you only look once) series network
model developed by MEGVII Technology (Beijing, China)
consisting of CSPDarknet, FPN, and YOLO HEAD®'.

In the YOLOX-S model, the RGB image of size 640x640x3 is
first input to the Focus module (Figure 9). The Focus module
selects the spaced pixels in an image to form four independent
feature layers with the same number of channels and an area size
that is reduced by a factor of 1/4 from the original image. These
four independent feature layers are then superimposed to obtain a
feature layer with a size of 320x320x12.

CSPDarknet adopts the structure of SPPBottleneck and CSPNet
(Figure 10), which amplifies the difference in gradient joint,
eliminates the repeated information that is learned by different

— Maxpool

F— Maxpool

B - o~ s

g e 3

Res

network layers, and effectively extracts the depth of tea buds in the
changeable open-air tea garden environment information while
increasing only a small amount of model volume. Once the
CSPDarknet extracts the depth image information of the tea bud, the
model will output the depth feature information of the tea bud with
sizes of 80x80x256, 40x40x512 and 20x20x1024 for two CSP2
layers, and one CSP3 layer to the FPN layer, respectively, to
achieve feature enhancement extraction.

Figure 9 Schematic of Focus module

Res

-

=

m ef—» R JRE>{E H*—>-
5 cos

Note: CBS: Conv+BN+SiLU; Res: Residual Block; CSP: CSPDarknet; BN: Batch Normalization; SiLU: Sigmoid Weighted Liner Unit; ADD: Element-wise add.

Same below.

Figure 10  Schematic of the specific structure of SPPBottleneck, CBS, Res, and three types of CSP

In the YOLOX-S, the CSPNet structure is used in the FPN
layer. Further, the multi-feature extraction layer is designed as a
pyramid, and this can help fuse the feature layers of different shapes
and numbers of channels and subsequently result in enhanced
feature extraction. The FPN layer of YOLOX-S can not only
perform efficient feature extraction for the relatively complex and
changeable background as well as the target in the LJ43 dataset but
also take into account the characteristics of the top and bottom layer
feature information, which helps the YOLOX-S predict and detect
the position of small targets. The obtained accuracy is excellent
making the model suitable for use in the study of the LJ43 dataset
and the MVT dataset.

As shown in Figure 11, in the YOLO-HEAD section, a

Target classification

Target box regression

Figure 11

decoupled head, which has not been used in the YOLO series
before, is used. The decoupled head does not use the same depth
feature information for detection classification and target box
regression for prediction, but it outputs three prediction results for
each feature layer. It further predicts the detection classification and
target box regression results separately and stacks them accordingly.
The deep feature information of the classification branch is more
concise, and thus, it is suitable for classification tasks in cases that
involve only two types of labels. There are more contour boundary
features in the depth feature information of the regression branch,
and this factor can help distinguish the difference in shape between
old leaves and tea buds, and in doing so, reduce the possibility of
false detection.

Conv

Conv —)w—)T—) Reshape

Conv

Schematic of YOLO HEAD module
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In terms of anchor box selection, YOLOX-S applies the anchor-
free method. In the anchor-based algorithm, to obtain a more
suitable anchor frame value, it is often necessary to perform
clustering algorithm processing on the annotation frame of the
dataset before training. However, this may result in an increase in
the complexity of the detection head and the number of generated
results. The algorithm of the anchor-free method is simple, and it is
suitable for datasets that require intensive prediction, such as the
LJ43 dataset and the MVT dataset.

Based on the comprehensive analysis of the network structure
and characteristics, this study uses YOLOX-S as the basic model
and makes targeted improvements to YOLOX-S to ensure that it
caters to small-sized targets.

2.2.2 Addition of attention mechanism

An attention mechanism is a good approach for improving the
detection ability of the target detection network.

Based on a comprehensive analysis of the literature, the ECA-
Net attention mechanism was added to YOLOX-S for model
optimization®”. The ECA-Net channel attention mechanism, shown
in Figure 12, can yield excellent detection results based on the
addition of only a few parameters. ECA-Net uses a 1x1
convolutional layer directly after the global average pooling layer
and thus removes the fully connected layer. The ECA-Net module

Random data

Augmentation

does not reduce the information dimensions, and therefore, the
DMT network can learn the top-level information more effectively
and improve the tea bud position prediction ability. At the same
time, the DMT network can effectively capture cross-channel
interaction information, and it can also extract the middle and
bottom information, thus improving the detection ability for small
targets such as tea buds. Therefore, the ECA-Net attention
mechanism is introduced in the Backbone and RPN stages to
enhance the feature extraction effect; the overall structure of the
DMT network is shown in Figure 13.

¢
!

Note: W is the width of the image; H is short for the height of the image; C is
short for the number of channels of the image. The blue square is the original
channel, the green square is the channel without change, and the red square is the
new channel formed by multiple blue channels after local cross-channel
information exchange.

Figure 12 ECA-Net structure

640x64x3 CSPdarknet53
320x320x12  320x320x64  160x160x128
CBS CBS 80x80x256 CBS 40x40%x512 (S?]PBE 20%20%x1024
Focus 8 CBS CSP1 CSP3 CSP3 CSP3
—’"l"‘-’._i" R
Concat
Concat CSP2 - Conv
CSP2 Conv
FPN
80X80X256U . 40x40x512 20%20x1024
sampling Usampling
—— 3
. Conv - Conv
Concat Concat
CSP2 ik CSP2

Downsample

40%40X512 Downsample 20201024

>

YOLOHead YOLOHead YOLOHead

Output

YOLOHead

Note: Compared to the original CSP Darknet, the DMT network adds one ECA-Net each after the first and second CSP layers in CSP Darknet. Compared to the original
FPN layer, the DMT network adds ECA Net between the second and third CSP layers in CSP Darknet and the Concat module of FPN, the fourth in CSP Darknet and the

first in FPN layer. ECA-Net module is added between the CBS modules.

Figure 13 Overall detection flow chart of DMT network

2.3 Experiment environment and evaluation index
2.3.1 Hardware and software environment

All experiments use a computer with an Intel i7 12700 CPU,
NVIDIA 3080ti GPU, and 32 GB of memory. The computer runs

Ubuntu 18.04, Python 3.8, and PyTorch 1.11.
2.3.2  Evaluation metrics of deep learning models

This study used three commonly used indicators in the field of
machine learning to evaluate the target detection effect, such as
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Equations (1)-(3).

TP
P=Tp P (M
TP
R=Tp+EN 2
AP = L' P(R)AR 3)

where, P is the precision; R is the recall; TP denotes True Positive,
the true category is positive, the predicted category is positive; FP
denotes False Positive, the true category is negative, the predicted
category is positive; FN denotes False Negative, true class is
positive, predicted class is negative.

Due to the high quality of famous tea raw materials, it is more
unacceptable to detect unqualified leaves as qualified tea buds than
to omit qualified tea buds. Therefore, precision and AP are more
important than recall.

2.4 Model training
2.4.1 Model training parameter settings

The LJ43 dataset which consists of 60 000 images is classified
as a training set and a validation set according to a ratio of 9:1. The
training parameters are set as follows: the batch size of 161 200
epochs, the initial learning rate of 0.02, and minimum learning rate
of 0.0002. Stochastic gradient descent (SGD) with a momentum of
0.937 and weight decay of 0.000 05 as well as cosine annealing
learning is adopted to optimize the training effect.

2.4.2 Adding pre-trained model

The convergence speed during model training can be improved
by avoiding local optimum points or saddle points and by increasing
the generalization ability of the model. The PASCAL VOC dataset
was used for pre-training on the DMT network before training with
the LJ43 dataset. A comparison of the YOLOX-S model and the pre-
trained model performance is shown in Figure 14, which indicates
the favorable impact of the addition of a pre-training model on the
DMT network. At the same time, adding a pre-training model under
the same hyperparameters ensures that the DMT network converges
more quickly during training.

10 ¢
9l No pretrained weights

g ———Pretrained weights
7L
6L
Z 5|
= J

at e

3 - -
2t
1k

0 I I I I I )
0 200 400 600 800 1000 1200

Epoch

Figure 14 Loss curves of the validation set to check whether
pre-training is required

2.5 Experimental methods
2.5.1 Comparison of attention mechanisms

The impact of different attention mechanisms on the model is
studied to verify the superiority of the ECA-Net attention
mechanism over the YOLOX-S model. Without adding gain
methods such as pre-training models, three different attention
mechanisms are added to the YOLOX-S model to evaluate the
overall improvement. The three different attention mechanisms are

convolutional block attention module (CBAM)™), squeeze and
excitation networks (SE-Net)*, and ECA-Net.
2.5.2 Mosaic data augmentation method

The mosaic data augmentation method is enabled by default in
the YOLOX model. The mosaic method is implemented as follows:
first, four images are randomly selected from the training set, and
image flipping, image scaling, color gamut adjustment, and other
image adjustment operations are performed on these images. The
four images are then spliced with target frames to generate a new
image with a complex background and a higher number of target
frames. On most public datasets, the mosaic data enhancement
method enriches the background of the detected objects, which can
be equivalent to detecting four pictures at the same time during the
match normalization calculation. This further enriches the dataset
and saves computing resources, thus resulting in a significant
performance improvement. The results of the mosaic data
augmentation method on the LJ43 dataset are shown in Figure 15. It
is observed that some target boxes in the image become very small,
and the background of the image becomes more complex. The
impact of these factors on the detection performance of the DMT
network is not known. Therefore, on the LJ43 dataset, other
parameters were fixed, and experiments were performed with
mosaic data augmentation enabled and mosaic data augmentation
disabled.

Figure 15 Mosaic data enhanced image effect

2.5.3 Comparison of popular target detection models

To verify the applicability of the DMT network to the target
detection of tea bud in spring and autumn in the natural
environment, the proposed DMT network was compared with the
five popular target detection models (YOLOX-S, YOLOVS-S,
YOLOV4, Faster-RCNN, and SSD)=l,
2.5.4 Target detection generalization ability

As listed in Table 2, the study created an MVT dataset of 3000
images to examine the generalization ability of YOLOX-S after the
addition of the attention mechanism. A dataset consisting of 1000
images could be considered “few-shot learning”. Three methods are
commonly used for few-shot learning: model fine-tuning, data
augmentation, and transfer learning. Among these methods, transfer
learning requires high computing power, and it takes a long time to
train. For the data enhancement method, if the number of enhanced
pictures is significantly small, the accuracy improvement will be
small; if the number of enhanced pictures is too large, it will also
require substantial training time. Therefore, this study adopts the
DMT network to train the LJ43 dataset as a pre-training model and
uses the MVT dataset for model fine-tuning. The LJ43 dataset
generated by a large number of Longjing 43 tea images can greatly
improve the detection of most green tea varieties in different
picking seasons. In detecting other varieties of green tea and famous
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tea varieties, because there are fewer samples, the data fine-tuning
method can achieve better detection results in a short time.

Table 2 Comparison of quantity and proportion of spring tea
and autumn tea between original images and LJ43 dataset

Item Original image LJ43 dataset
Spring tea 7000 30 000
Autumn tea 3000 30 000
Proportion 7:3 1:1

3 Results and discussion

3.1 Attention mechanism comparison results

Compared to the original model, the addition of the three
attention mechanisms provided a significant and positive impact on
the performance of the YOLOX-S model. As listed in Table 3,
among these models, DMT shows the best AP and precision in
detecting spring tea and autumn tea. In the detection of spring tea
and autumn tea, SE-YOLOX-S shows the best performance on
recall. At the same time, the size of the DMT network only
increased by 440 Params, while that of the SE-YOLOX-S and
CABM-YOLOX-S increased by 166 200 and n Params, respectively.
Therefore, ECA-Net is more suitable for the task of identifying
famous tea buds compared to the CBAM and SE-Net.

Table 3 Recognition performance of DMT, YOLOX-S, and
YOLOX-S with three attention mechanisms added

Spring tea bud Autumn tea bud
AP Precision Recall AP Precision Recall
1% /% 1% 1% 1% 1%
DMT 91.58 92.74 81.06 90.92 89.81 85.81 8968695
SE-YOLOX-S 90.45 9223 8242 89.35 89.64 86.62 9134455
CBAM-YOLOX-S 90.06 91.96 82.63 90.92 89.23 84.91 9019 565
YOLOX-S 89.63 90.88 82.46 89.27 87.96 83.83 8968255

Total
Params

Model

3.2 Mosaic comparison experiment results

As shown in Table 4, after enabling the mosaic data
augmentation method in the LJ43 dataset, the AP, precision, and
recall of spring tea decreased by 1.72%, 0.53%, and 3.98%,
respectively. The AP, precision, and recall of autumn tea decreased
by 2.58%, 0.33%, and 3.77%, respectively. Contrary to the random
combination data enhancement method adopted in Section 2.1.3, the
image background that is generated using the Mosaic data
enhancement method is extremely complex. In some public
datasets, because of the single background of the detected object,
the Mosaic data enhancement method is very effective. However,
when the LJ43 dataset under study already has a fairly complex
environmental background, the use of the Mosaic data enhancement
method will result in an increase in the complexity of the
background, subsequently affecting the detection effect. At the
same time, because of Mosaic data enhancement, four pictures are
spliced into one picture, which further increases the difficulty of
small target detection, especially for tea bud detection.

Table 4 Tea bud detection performance of DMT with and
without mosaic data augmentation method

Spring tea bud Autumn tea bud
AP/% Precision/% Recall/% AP/% Precision/% Recall/%
No Mosaic DMT 94.23 93.39 88.02  93.92 93.56 87.88
Mosaic DMT ~ 92.51 92.86 84.04 91.34 93.23 84.11

Model

3.3 Comparison of popular target detection models
The YOLO series models have been widely used in various

target detection tasks. This study compares YOLOX-S, YOLOVS-
S, and YOLOV4 models with DMT; the results are listed in Table 5.
Compared to the YOLOX-S model, the DMT network results in a
4.60% increase in AP value, a 5.56% increase in recall, and a 2.51%
increase in precision value in the case of spring tea. For the autumn
tea, the AP value increased by 4.65%, recall increased by 4.05%,
and precision increased by 5.60%. An important factor behind the
increase in these values is the addition of appropriate cross-channel
interaction to the deep information learning of the target because of
the use of the ECA-Net module, which improves the model’s ability
to acquire deep information. At the same time, the application of the
anchor-free method to calculate the anchor box based on the
prediction of the network also makes the YOLOX model and the
improved YOLOX model more suitable for target detection tasks
with complex backgrounds and small detection targets such as wild
tea recognition. The DMT network is superior to existing YOLO
series models in terms of most indicators.

Table 5 Detection performance results of DMT and commonly
used target detection models

Spring tea bud Autumn tea bud
Model Precision Recall Precision Recall Total
0 0, Params
AP/% 1% % AP/% % %
No Mosaic
Pre-training DMT 9423 9339 88.02 9392 93.56 87.88 8968695
No Mosaic
No pre-training  91.58 92.74 81.06 90.92 89.81 85.81 8968695
DMT
Mosaic

Pre-training DMT 9251 92.86 84.04 91.34 93.23 84.11 8968 695

SE-YOLOX-S 90.45 9223 8242 8935 89.64 86.62 9134455
CBAM-YOLOX-S 90.06 91.96 82.63 90.92 89.23 8491 9019565
YOLOX-S 89.63 90.88 82.46 89.27 87.96 83.83 8968255
YOLOVS5-S 87.29 8547 7833 85.15 84.98 73.64 7276605
YOLOV4 84.84 80.89 75.61 79.89 80.15 74.42 64363101

Resnet50-Faster-
RCNN

Vggl6-SSD 67.18 65.61 7137 63.21 61.59 60.48 26151 824

80.05 79.22 7819 76.95 77.68 74.43 137078 239

The performance of the DMT network is also significantly
better than that of the Faster-RCNN target detection model. The
main reason is that in Faster-RCNN, Resnet50 is used as the
backbone, and its feature maps are only sourced from top-level
features, which enables information that is not conducive to the
positioning of the target frame. Because of the small target of the
LJ43 dataset, and some targets are occluded and blurred, the
prediction method that only uses the features of the top layer of the
network to predict the target is not ideal for predicting the position
of tea buds. As shown in Figure 16, when the tea bud is very small,
the position prediction error causes inaccurate spatial positioning
for the picking machinery, resulting in picking failure.

Note: A large number of errors indicate that the approximate position has been

predicted, but the deviation between the specific position or the size of the

prediction frame and the standard frame is too large to be used as a qualified

prediction frame. Here, the blue and red boxes are the labeling and error

prediction boxes, respectively.

Figure 16 Faster-RCNN and VGG16-SSD 300 error examples of
tea bud prediction
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The DMT network also outperforms VGG16-SSD 300 in terms
of precision, AP, and recall. Unlike Faster-RCNN, VGG16-SSD
300 adopts a deep learning network with a multi-scale feature
fusion method but does not fully utilize the features of lower layers,
resulting in its inability to identify and detect small targets. This
model is thus not applicable to the LJ43 dataset. At the same time,
the resolutions of Faster-RCNN (512x512%3) and VGG16-SSD 300
(512x512x3) are also relatively small, which is not conducive to
small targets such as tea buds.

3.4 DMT generalization ability on MVT dataset

The data indicators are shown in Table 6. For detecting No. 108
Zhongcha tea in March 2021, the AP, precision, and recall are
81.49%, 77.79%, and 71.41%, respectively, which are the lowest
among the three MVT datasets. This is because the image collection
method involved fixing a tarpaulin behind the tea buds for flash
photography, which is different from the open-air shooting method
in the LJ43 dataset, resulting in a large difference in the images. In
future research, a variety of different image-shooting methods can
be added to expand the diversity of the dataset.

Table 6 Tea bud detection performance of DMT using the

MVT dataset
MVT dataset AP/% Precision/% Recall/%
May 2020 No. 43 Longjing 83.43 80.37 76.12
August 2020 Cuifeng 84.24 82.32 75.33
March 2022 No 108. Zhongcha 81.49 77.79 71.41

Compared to the recognition performance of DMT on No. 43
Longjing tea in April and No.43 Longjing in August, the AP,
precision, and recall of No. 43 Longjing in May 2020 decreased by
10.8%, 13.02%, 11.9%, and 10.49%, 13.19%, 11.76%, respectively.
Although there are two types of May data for No. 43 Longjing and
the data originate from the same variety of tea trees, the
characteristics of summer tea in May are slightly different from
those of spring tea and autumn tea. In May, the tender bud leaves of
No. 43 Longjing tea are larger and more relaxed compared to those
of spring tea, and their color is similar to the surrounding old leaves,
but different from autumn tea. Therefore, summer tea images can be
added to the LJ43 dataset in subsequent studies to cover all harvest
seasons of local tea. Here, only the method of training spring tea
and autumn tea cannot accurately detect summer tea.

The detection performance for Cuifeng Green Tea in August
2020 was relatively good, and AP, precision, and recall were
84.24%, 82.32%, and 75.33%, respectively. This is because the
characteristics of autumn Cuifeng Green Tea are similar to those of
No. 43 Longjing, and the photographic sampling methods are also
similar.

Figure 17 shows the original pictures of three different tea
varieties in different picking seasons and at different times along
with their detection results. A majority of the tea buds can be
accurately identified, and this proves that the DMT network can be
used on the MVT dataset. After fine-tuning, the DMT network has
the ability to detect spring tea, summer tea, and autumn tea of
different varieties of green tea in three picking seasons.

3.5 Analysis of error detection results

From the analysis of a detected image that is arbitrarily selected
(Figure 18), some detection errors (red boxes) are observed in the
image. The error detection type shown in Figure 18b accounts for
the largest proportion of errors. During the production of the tea
dataset, 20 or more tea buds often appear in a single image, and
some tea buds are blurred. Moreover, some tea buds are located in

corners, and some overlap with other tea buds. Such unfavorable
situations make it impossible to completely select all tea buds that
meet the standard during manual labeling. The detection of under-
labeled shoots will result in an increase in the FP value, and this
further affects precision and AP.

a. Original image of No. 108
Zhongcha tea in March 2022

b. Image of No. 108 Zhongcha tea
in March 2022 after detection

{

d. Image of No. 43 Longjing tea
in May 2020 after detection

c. Original image of No. 43
Longjing tea in May 2020

e. Original image of Cuifeng
tea in August 2020

f. Image of Cuifeng tea in August
2020 after detection.
Figure 17 Original image of three types of tea with different
varieties, different plantation locations, and different times, along
with their detection results

Note: The blue box is the label box when making dataset, the green box is the

prediction box that is judged to be correct after prediction, and the red box is the

prediction box that is judged to be wrong after prediction. Boxes (a)-(d), and (g)

are ignored in the labeling process but are actually the correct tea buds. Box (b) is

labeled incorrectly but is detected correctly in the detecting process. Box (f) is

judged as false detection because the detection box is out of range of label box.
Figure 18 Detection map of randomly selected single tea buds

randomly selected various error boxes

3.6 Performance comparison between YOLOX-S and DMT
network on the TinyPerson dataset

In order to further verify that the DMT network has a better
detection effect than YOLOX-S on a small target dataset. In this
study, the detection effect of YOLOX-S and DMT network was
compared on a small target public dataset TinyPerson”” as shown in
Figure 19 . At the same time, in the research that proposed this
dataset, it was tested using several common deep learning models,
and the results are listed in Table 7.
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Figure 19 Example of TinyPerson dataset

Table 7 Comparisons of APs, of various models on
TinyPerson from “Scale Match for TinyPerson Detection”

Detector APs,
FCOS 16.90
RetinaNet 30..82
DSFD 31.15
Adaptive RetinaNet 41.25
Adaptive FreeAnchor 41.36
Faster RCNN-FPN 43.55

The training parameters are set as follows: the batch size of 16,
500 epochs, the initial learning rate of 0.02, and the minimum
learning rate of 0.0 002. Stochastic gradient descent (SGD) with a
momentum of 0.937 and weight decay of 0.00 005 as well as cosine
annealing learning is adopted to optimize the training effect. No
additional data augmentation is used in training.

It can be seen from Table 8 and Figure 20, DMT has a higher
AP than YOLOX-S. DMT network not only adds ECA-Net each
after the first and second CSP layers in CSP Darknet but also adds
ECA Net between the second and third CSP layers in FPN.
Therefore, the DMT network has certain advantages in dealing with
the problem that features of small target data sets are difficult to
extract.

Table 8 Comparisons of AP5, on TinyPerson from this study

detector Label varieties APy,
Sea_Person 23.30
YOLOX-S -
Earth_Person 28.67
Sea_ Person 27.46
DMT network
Earth_Person 34.55

The detection effect of DMT and YOLOX-S in TinyPerson is
not good. The reasons may be as follows:

1) When the original image size is (1280, 720) and the
detection target is only dozens of pixels in size, the size of DMT
and YOLOX-S is still (600, 600) when input. It would make
detection targets more difficult to identify;

2) The number of images in TinyPerson is 793. After the 9:1
division of the training part and testing part, only 713 pictures
participated in the training. It would lead to insufficient learning of
data features by deep learning algorithms;

3) The training parameters used in training are not good enough
parameters of DMT and YOLOX-S for the TinyPerson data set, and

the data expansion method adopted in “Scale Match for TinyPerson
Detection” is not adopted in this study.

a. Original image in the TinyPerson dataset, which shows 9 targets

b. Detection effect of the DMT network, which correctly detected
3 targets and missed 6 targets without error detection

c. Detection effect of YOLOX-S, which correctly detected 2 targets and
missed 7 targets without error detection.

Figure 20 Comparisons of detection effect on TinyPerson

4 Conclusions

This study proposed an object detection network (DMT
network) based on YOLOX-S to improve the generalization ability
of the deep learning model on detecting multispecies of tea buds in
multi-season. The DMT network integrates attention mechanism to
realize cross-channel information interaction. Experiment results
show that in the LJ43 dataset (single variety), the AP, precision, and
recall of the DMT network are 94.23%, 93.39%, and 88.02%,
respectively, for spring tea; and 93.92%, 93.56%, and 87.88%,
respectively, for autumn tea. The results are better than other
comparison models (YOLOX, YOLOVS-S, YOLOV4, Faster
RCNN, and SSD). After fine-tuning the DMT network with the
MVT dataset, the DMT network has the ability to detect buds of
No. 43 Longjing tea in May, Cuifeng tea in August and No. 108
Zhongcha tea in March. The experimental results show that the
model has good generalization ability and can be used for detecting
multiple varieties of tea bud sprouting in multi-season. In future
studies, ways to improve the network structure and add summer tea
data to the dataset will be explored to further enhance generalization
detection ability. This study could promote the engineering
application of picking automation of fresh tea leaves.
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