Pretreatment mechanism of β-O-4 lignin during phosphoric acid-acetone process based on density functional theory and molecular dynamic simulations

Zhang Junjiao, Zhu Jinqi, Lin Changfeng, Wang Tipeng, Dong Changqing, Qin Wu

Abstract


Pretreatment mechanism of β-O-4 lignin (Lβ-O-4) during the phosphoric acid-acetone process involves a series of interactions between lignin and solvent molecule (H2O, CH3COCH3 and H3PO4) which lead to the adsorption, solubility and decomposition of lignin. Coniferyl alcohol guaiacyl glycerol (CAGG) with the predominant linkage (β-O-4 ether bond) was chosen as the model β-O-4 lignin (Lβ-O-4) for investigating the detailed pretreatment mechanism based on density functional theory calculations and molecular dynamic simulations. Interactions between β-O-4 lignin and solvent molecules were firstly detected. Only physical interaction occurred between β-O-4 lignin and the solvent molecule. The attractive van der Waals interaction favored CH3COCH3 molecules approaching to Lβ-O-4, showing a compatibility of Lβ-O-4 in CH3COCH3 solution. Furthermore, following the temperature effect on the dynamics processes, larger dynamics calculations and experiments were carried out to reveal the detailed dissolution and precipitation of β-O-4 lignin in various solutions.
Keywords: lignin, lignocellulose, biomass, pretreatment, density functional theory (DFT)
DOI: 10.3965/j.ijabe.20160902.2212

Citation: Zhang J J, Zhu J Q, Lin C F, Wang T P, Dong C Q, Qin W. Pretreatment mechanism of β-O-4 lignin during phosphoric acid-acetone process based on density functional theory and molecular dynamic simulations. Int J Agric & Biol Eng, 2016; 9(2): 127-136.

Keywords


lignin, lignocellulose, biomass, pretreatment, density functional theory (DFT)

Full Text:

PDF

References


Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J., 2008; 54(4): 559−568.

Feldman D, Banu D, Manley R S J, Zhu H. Highly filled blends of a vinylic copolymer with plasticized lignin: Thermal and mechanical properties. J. Appl. Polym. Sci., 2003; 89(7): 2000−2010.

Erakovic S, Veljovic D, Diouf P N, Stevanovic T, Mitric M, Milonjic S, et al. Electrophoretic deposition of biocomposite lignin / hydroxyapatite coatings on titanium. Inter. J. Chem. React. Eng., 2009; 7(1): 1542−6580.

Raschip I E, Hitruc E G, Vasile C. Semi-interpenetrating polymer networks containing polysaccharides. II. Xanthan/lignin networks: A spectral and thermal characterization. High Perform. Polym., 2011; 23(3): 219−229.

Cerrutti B M, de Souza C S, Castellan A, Ruggiero R, Frollini E. Carboxymethyl lignin as stabilizing agent in aqueous ceramic suspensions. Ind. Crop. Prod., 2012; 36(1): 108−115.

Faria F A, Evtuguin D V, Rudnitskaya A, Gomes M T, Oliveira J A, Graca M P F, et al. Lignin-based polyurethane doped with carbon nanotubes for sensor applications. Polym. Int., 2012; 61(5): 788−794.

Graça M P F, Rudnitskaya A, Faria F A C, Evtuguin D V, Gomes M T S R, Oliveira J A B P, et al. Electrochemical impedance study of the lignin-derived conducting polymer. Electrochim. Acta, 2012; 76: 69−76.

Rozite L, Varna J, Joffe R, Pupurs A. Nonlinear behavior of PLA and lignin-based flax composites subjected to tensile loading. J. Thermoplast. Compos., 2013; 26(4): 476−496.

Wang H, Zou J, Shen Y, Fei G, Mou J. Preparation and colloidal properties of an aqueous acetic acid lignin containing polyurethane surfactant. J. Appl. Polym. Sci., 2013; 130(3): 1855−1862.

Li Z L, Ge Y. Antioxidant activities of lignin extracted from sugarcane bagasse via different chemical procedures. Int J Biol Macromol., 2012; 51(5): 1116−1120.

Penkina A, Hakola M, Paaver U, Vuorinen S, Kirsimäe K, Kogermann K, et al. Solid-state properties of softwood lignin and cellulose isolated by a new acid precipitation method. Int J Biol Macromol., 2012; 51(5): 939−945.

Papa G, Varanasi P, Sun L, Cheng G, Stavila V, Holmes B, et al. Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresource Technol., 2012; 117: 352−359.

Koo B W, Min B C, Gwak K S, Lee S M, Choi J W, Yeo H, et al. Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass Bioenerg, 2012; 42: 24−32.

Donohoe B S, Decker S. R, Tucker M P, Himmel M E, Vinzant T B. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng., 2008; 101(5): 913−925.

Wang K, Yang H, Yao X, Xu F, Sun R C. Structural transformation of hemicelluloses and lignin from triploid poplar during acid-pretreatment based biorefinery process. Bioresource Technol., 2012; 116: 99−106.

Varanasi P, Singh P, Arora R, Adams D, Auer M, Simmons B A, et al. Understanding changes in lignin of Panicum virgatum and Eucalyptus globulus as a function of ionic liquid pretreatment. Bioresource Technol., 2012; 126: 156−161.

Kang P, Zheng Z M, Qin W, Dong C Q, Yang Y P. Efficient fractionation of Chinese white poplar biomass with enhanced enzymatic digestability and modified acetone-soluble lignin. Bioresources, 2011; 6(4): 4705− 4720.

Zhang Y H P, Cui J B, Lynd L R, Kuang L R. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: Evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules, 2006; 7(2): 644−648.

Beste A, Buchanan III A C Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers. J. Org. Chem., 2009; 74(7): 2837−2841.

Cho D W, Parthasarathi R, Pimentel A S, Maestas, G D, Park H J, Yoon U C, et al. Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds. J. Org. Chem., 2010; 75(19): 6549−6562.

Elder T. Computational study of pyrolysis reactions of lignin model compounds. Holzforschung, 2010; 64(4): 435−440.

Elder T. Bond dissociation enthalpies of a dibenzodioxocin lignin model compound. Energ. Fuel, 2013; 27(8): 4785−4790.

Jarvis M W, Daily J W, Carstensen H-H, Dean A M, Sharma S, Dayton D C, et al. Direct detection of products from pyrolysis of 2-phenethyl phenyl ether. J. Chem. Phys. A., 2011; 115(4): 428−438.

Kim S, Chmely S C, Nimlos M R, Bomble Y J, Foust T D, Paton R S, et al. Computational study of bond dissociation enthalpies for a large range of native and modified lignins. J. Phys. Chem. Lett., 2011; 2(22): 2846−2852.

Parthasarathi R, Romero R A, Redondo A, Gnanakaran S. Theoretical study of the remarkably diverse linkages in lignin. J. Phys. Chem. Lett., 2011; 2(20): 2660−2666.

Younker J M, Beste A, Buchanan III A C. Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds. ChemPhysChem., 2011; 12(18):

−3565.

Younker J M, Beste A, Buchanan III A C. Computational study of bond dissociation enthalpies for lignin model compounds: β-5 arylcoumaran. Chem. Phys. Lett., 2012; 545: 100−106.

Gardrat C, Ruggiero R, Rayez M-T, Rayez J-C, Castellan A. Experimental and theoretical studies of the thermal degradation of a phenolic dibenzodioxin lignin model. Wood Sci. Technol., 2013; 47(1): 27−41.

Durbeej B, Eriksson L A. Formation of β-O-4 lignin models - A theoretical study. Holzforschung, 2003; 57(5): 466−478.

Durbeej B, Eriksson L A. A density functional theory study of conferyl alcohol intermonomeric cross linkages in lignin-three-dimensional structures, stabilities and the thermodynamic control hypothesis. Holzforschung, 2003; 57(2): 150−164.

Martínez C, Rivera J L, Herrera R, Rico J L, Flores N, Rutiaga J G, et al. Evaluation of the chemical reactivity in lignin precursors using the fukui function. J. Mol. Model., 2008; 14(2): 77−81.

Shigematsu M, Masamoto H. Solvent effects on the electronic state of monolignol radicals as predicted by molecular orbital calculations. J. Wood Sci., 2008; 54(4): 308−311.

Sangha A K, Parks J M, Standaert R F, Ziebell A, Davis M, Smith J C. Radical coupling reactions in lignin sythesis: A density functional theory study. J. Phys. Chem. B., 2012; 116(16): 4760−4768.

Elder T. Quantum chemical determination of Young’s modulus of lignin calculations on a β-O-4 model compound. Biomacromolecules, 2007; 8(11): 3619−3627.

Holmelid B, Kleinert M, Barth T. Reactivity and reaction pathways in thermochemical treatment of selected lignin-like model compounds under hydrogen rich conditions. J. Anal. Appl. Pyrol., 2012; 98: 37−44.

Chu S, Subrahmanyam A V, Huber G W. The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound. Green. Chem., 2013; 15(1): 125−136.

Wu X, Fu J, Lu X. Kinetics and mechanism of hydrothermal decomposition of lignin model compounds. Ind. Eng. Chem. Res., 2013; 52(14): 5016−5022.

Freudenberg K, Neish A C. Constitution and Biosynthesis of Lignin. New York: Springer-Verlag, 1968; 784p.

Haensel T, Reinmöller M, Lorenz P, Beenken W J D, Krischok S, Ahmed S I U. Valence band structure of cellulose and lignin studied by XPS and DFT. Cellulose, 2012; 19(3): 1005−1011.

Wang P, Anderko A. Computation of dielectric constants of solvent mixtures and electrolyte solutions. Fluid Phase

Equilibria, 2001; 186: 103−122.

Munson R A. Dielectric constant of phosphoric acid. J. Chem. Phys. 1964; 40: 2044−2046.

Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005; 26(16): 1781−1802.

Darden T, York D, Pedersen L. Particle mesh ewald: An N Log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993; 98(12): 10089−10092.

Levitt M, Hirshberg M, Sharon R, Daggett V. Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput. Phys. Commun., 1995; 91(1-3): 215−231.

Qin W, Li X, Bian W W, Fan X J, Qi J Y. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. Biomaterials, 2010; 31(5): 1007−1016.

Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many electron system. Phys. Rev. B 1996; 54(23): 16533−16539.

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996; 77(18): 3865−3868.

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1997; 78(7): 396.

Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys., 1990; 92(1): 508−517.

Delley B. Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem., 1996; 100(15): 6107− 6110.

Delley B. From molecules to solids with the DMol3

approach. J. Phys. Chem., 2000; 113(18): 7756−7764.

Kudin K N, Ozbas B, Schniepp H C, Prudhomme R K, Aksay I A, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett., 2008; 8(1): 36−41.

Govind N, Petersen M, Fitzgerald G, Smith D K, Andzelm J. A generalized synchronous transit method for transition state location. Comp. Mater. Sci., 2003; 28(2): 250−258.

Nordström Y, Norberg I, Sjöholm E, Drougge R. A new softening agent for melt spinning of softwood kraft lignin. J. Appl. Polym. Sci., 2013; 129(3): 1274−1279.

Zhang X B, Li Z S, Lu Z Y, Sun C C. Molecular dynamics simulation of the linear low-density polyethylene crystallization. J. Chem. Phys., 2001; 115(8): 3916−3922.

Zhang X B, Li Z S, Yang H, Sun C C. Molecular dynamics simulations on crystallization of polyethylene copolymer with precisely controlled branching. Macromolecules, 2004; 37(19): 7393−7400.

Norgren M, Edlund H, Lars W. Fundamental physical aspects on lignin dissolution. Nord. Pulp. Pap. Res. J., 2002; 17(4): 370−373.

Fiţigău I F, Peter F, Boeriu C G. Structural analysis of lignins from different sources. World Academy of Science, Eng. Technol., 2013; 7: 98−103.

Methacanon P, Weerawatsophon U, Thainthongdee M, Lekpittaya P, Kasetsart J. Optimum conditions for selective separation of kraft lignin. Kasetsart J. (Nat. Sci.), 2010; 44(4): 680−690.

Kang P, Qin W, Zheng Z M, Dong C Q, Yang Y P. Theoretical study on the mechanisms of cellulose dissolution and precipitation in the phosphoric acid-acetone process. Carbohyd. Polym., 2012; 90(4): 1771−1778.




Copyright (c)



2023-2026 Copyright IJABE Editing and Publishing Office