Identification of lambda-cyhalothrin residues on Chinese cabbage using fuzzy uncorrelated discriminant vector analysis and MIR spectroscopy
Abstract
Keywords: Chinese cabbage, mid-infrared spectroscopy, fuzzy uncorrelated discriminant vector, uncorrelated discriminant vector, lambda-cyhalothrin residues
DOI: 10.25165/j.ijabe.20221503.6486
Citation: Wu X H, Zhang T F, Wu B, Zhou H X. Identification of lambda-cyhalothrin residues on Chinese cabbage using fuzzy uncorrelated discriminant vector analysis and MIR spectroscopy. Int J Agric & Biol Eng, 2022; 15(3): 217–224.
Keywords
Full Text:
PDFReferences
Liu P J, Guo Y Z. Current situation of pesticide residues and their impact on exports in China. Journal of Agricultural Science and Technology, 2017; 19(11): 8–14. (in Chinese)
Zhu Q Y, Yang Y, Zhong Y Y, Lao Z T, O’Neill P, Hong D, et al. Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). Chemosphere, 2020; 254: 126779. doi: 10.1016/j.chemosphere.202.126779.
Hassan M M, Li H H, Ahmad W, Zareef M, Wang J J, Xie S C, et al. Au@Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration. LWT, 2019; 105: 290–297.
Yang N, Wang P, Xue C Y, Sun J, Mao H P, Oppong P K. A portable detection method for organophosphorus and carbamates pesticide residues based on multilayer paper chip. Journal of Food Process Engineering, 2018; 41(8): e12867. doi: 10.1111/jfpe.12867.
Ma P, Wang L Y, Xu L, Li J Y, Zhang X D, Chen H. Rapid quantitative determination of chlorpyrifos pesticide residues in tomatoes by surface-enhanced Raman spectroscopy. European Food Research and Technology, 2020; 246(1): 239–251.
Zhou J W, Zou X, Song S H, Chen G H. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues. Journal of Agricultural & Food Chemistry, 2018; 66(6): 1307–1319.
Boydas M G, Ozbek I Y, Kara M. An efficient laser sensor system for apple impact bruise volume estimation. Postharvest Biology & Technology, 2014; 89: 49–55.
Yao Y, Zhang P, Chen Q J, Liu W F, Zeng J, Xie J J, et al. Characterization of pesticide residual dynamics by in situ attenuated total reflection FTIR. Spectroscopy and Spectral Analysis, 2012; 32(12): 3217–3219. (in Chinese)
Sun J, Ge X, Wu X H, Dai C X, Yang N. Identification of pesticide residues in lettuce leaves based on near infrared transmission spectroscopy. Journal of Food Process Engineering, 2018; 41(6): e12816. doi: 10.1111/jfpe.12816.
Chen Q S, Cai J R, Wan X M, Zhao J W. Application of linear/non-linear classification algorithms in discrimination of pork storage time using Fourier transform near infrared (FT-NIR) spectroscopy. LWT - Food Science and Technology, 2011; 44(10): 2053–2058.
Armenta S, Quintas G, Garrigues S, Guardia M. Mid-infrared and Raman spectrometry for quality control of pesticide formulations. Trends in Analytical Chemistry, 2005; 24(8): 772–781.
Jiang S Y, Sun J, Xin Z, Mao H P, Wu X H, Li Q L. Visualizing distribution of pesticide residues in mulberry leaves using NIR hyperspectral imaging. Journal of Food Process Engineering, 2017; 40(4): e12510. doi: 10.1111/jfpe.12510.
Sun J, Jin X M, Mao H P, Wu X H, Tang K, Zhang X D. Identification of lettuce leaf nitrogen level based on adaboost and hyperspectrum. Spectroscopy and Spectral Analysis, 2013; 33(12): 3372-3376.
Yang T M, Zhou R, Jiang D, Fu H Y, Su R, Liu Y X, et al. Rapid detection of pesticide residues in Chinese herbal medicines by Fourier transform infrared spectroscopy coupled with partial least squares regression. Journal of Spectroscopy, 2016; 2016: 9492030. doi: 10.1155/2016/9492030.
Etzion Y, Linker R, Cogan U, Shmulevich I. Determination of protein concentration in raw milk by mid-infrared Fourier transform infrared/attenuated total reflectance spectroscopy. Journal of Dairy Science, 2004; 87(9): 2779–2788.
Yang J B, Du C W, Shen Y Z, Zhou J M. Rapid determination of nitrate in Chinese cabbage using Fourier transforms mid-infrared spectroscopy. Chinese Journal of Analytical Chemistry, 2013; 41(8): 1264–1268.
Su W H, Bakalis S, Sun D W. Potato hierarchical clustering and doneness degree determination by near-infrared (NIR) and attenuated total reflectance mid-infrared (ATR-MIR) spectroscopy. Journal of Food Measurement and Characterization, 2019; 13(2): 1218–1231.
Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Human Genetics, 2012; 7(7): 179–188.
Jin Z, Yang J Y, Hu Z S, Lou Z. Face recognition based on the uncorrelated discriminant transformation. Pattern Recognition, 2001; 34(7): 1405–1416.
Chen M S, Chen H X, Liu W. A new method for resolving the uncorrelated set of discriminant vector. Chinese Journal of Computers, 2004; 27: 913–917. (in Chinese)
Zadeh L A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1978; 1(1): 3–28.
Wu X H, Zhu J, Wu B, Huang D P, Sun J, Dai C X. Classification of Chinese vinegar varieties using electronic nose and fuzzy Foley - Sammon transformation. Journal of Food Science and Technology-Mysore, 2020; 57(5): 1310–1319.
Wu X H, Zhu J, Wu B, Zhao C, Sun J, Dai C X. Discrimination of Chinese liquors based on electronic nose and fuzzy discriminant principal component analysis. Foods, 2019; 8(1): 38. doi: 10.3390/foods8010038.
Chen Z P, Jiang J H, Li Y, Liang Y Z, Yu R Q. Fuzzy linear discriminant analysis for chemical data sets. Chemometrics & Intelligent Laboratory Systems, 1999; 45(1): 295–302.
Lin C F, Wang S D. Fuzzy support vector machines. IEEE Transactions
on Neural Networks, 2002; 13(2): 464–471.
Ning Y W, Shi X Y, Yin J G, Xie D W. Application of fuzzy C-means clustering method in the analysis of severe medical images. Journal of Intelligent and Fuzzy Systems, 2020; 38: 1–11.
Cadenas J M, Garrido M C, Martinez R, Munoz E, Bonissone P P. A fuzzy K-nearest neighbor classifier to deal with imperfect data. Soft Computing, 2018; 22: 3313–3330.
Dong C W, Yang Y E, Zhang J Q, Zhu H K, Liu F. Detection of thrips defect on green-peel citrus using hyperspectral imaging technology combining PCA and B-spline lighting correction method. Journal of Integrative Agriculture, 2014; 13(10): 2229–2235.
Wu X H, Wu B, Sun J, Yang N. Classification of apple varieties using
near infrared reflectance spectroscopy and fuzzy discriminant C-means clustering model. Journal of Food Process Engineering, 2017; 40(2): e12355. doi: 10.1111/jfpe.12355.
Rozza A, Lombardi G, Casiraghi E, Campadelli P. Novel Fisher discriminant classifiers. Pattern Recognition, 2012; 45(10): 3725–3737.
Foley D H, Sammon J W. An optimal set of discriminant vectors. IEEE Transactions on Computers, 1975; 24(3): 281–289.
Bezdek J C. Pattern recognition with fuzzy objective function algorithms. New York: Plenum, 1981, 1–256.
Barra V, Boire J Y. Tissue segmentation on MR images of the brain by possibilistic clustering on a 3D wavelet representation. Journal of Magnetic Resonance Imaging Jmri, 2015; 11(3): 267–278.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.