Fast extraction of winter wheat planting area in Huang-Huai-Hai Plain using high-resolution satellite imagery on a cloud computing platform
Abstract
Keywords: Google Earth Engine, regional scale, winter wheat, rapid mapping
DOI: 10.25165/j.ijabe.20221501.6917
Citation: Zhang D Y, Zhang M R, Lin F F, Pan Z G, Jiang F, He L, et al. Fast extraction of winter wheat planting area in Huang-Huai-Hai Plain using high-resolution satellite imagery on a cloud computing platform. Int J Agric & Biol Eng, 2022; 15(1): 241–250.
Keywords
Full Text:
PDFReferences
Food and Agriculture Organization of the United Nations. Available: http://www.fao.org/faostat/en/#data. Accessed on [2021-04-16].
National Bureau of Statistics. Available: http://www.stats.gov.cn/. Accessed on [2021-04-16].
Qiu B W, Luo Y H, Tang Z H, Chen C C, Lu D F, Huang H Y, et al. Winter wheat mapping combining variations before and after estimated heading dates. ISPRS Journal of Photogrammetry and Remote Sensing, 2017; 123: 35–46.
He Z X, Zhang M, Wu B F, Xing Q. Extraction of summer crop in Jiangsu based on Google Earth Engine. Journal of Geo-Information Science, 2019; 21(5): 752–766. (in Chinese)
Xu F, Li Z, Zhang S, Huang N, Prishchepov A V. Mapping winter wheat with combinations of temporally aggregated sentinel-2 and Landsat-8 data in Shandong Province, China. Remote Sens, 2020; 12: 2065. doi: 10.3390/rs12122065.
Guan S, Han P, Wang Y, Han Y, Lin Y I, Zhou T, et al. Study on the classification of typical plantations in south China. Journal of Geo-information Science, 2017; 19(11): 1538–1546. (in Chinese)
Zhang J, Zhang X, Tian L, Zhang Q F. The support vector machine method for RS images' classification in northwest arid area. Science of Surveying and Mapping, 2017; 42(1): 49–52, 58. (in Chinese)
Yang Y K, Jiang P A, Wu H Q, Zhu L. Recognition research of Korla fragrant pear planting area based on satellite images of GF-1 and Landsat 8. Shandong Agricultural Sciences, 2018; 50(1): 153–157. (in Chinese)
Wang C W, Chen Q, Fan H S, Yao C L, Sun X, Chan J, et al. Evaluating satellite hyperspectral (Orbita) and multispectral (Landsat 8 and Sentinel-2) imagery for identifying cotton acreage. International Journal of Remote Sensing, 2021; 42(11): 4042–4063.
Zhang S, Zhang J H, Bai Y, Yao F M. Extracting winter wheat area in Huanghuaihai Plain using MODIS-EVI data and phenology difference avoiding threshold. Transactions of the CSAE, 2018; 34(11): 150–158. (in Chinese)
Qiu B W, Luo Y H, Tang Z H, Chen C C, Lu D F, Huang H Y, et al. Winter wheat mapping combining variations before and after estimated heading dates. ISPRS Journal of Photogrammetry and Remote Sensing, 2017; 123: 35–46.
He T L, Xie C J, Liu Q S, Guan S Y, Liu G H. Evaluation and comparison of random forest and A-LSTM networks for large-scale winter wheat identification. Remote Sensing, 2019; 11(14): 1665. doi: 10.3390/rs11141665.
Yang Y J, Tao B, Ren W, Zourarakis D P, Masri B E, Sun Z G, et al. An improved approach considering intraclass variability for mapping winter wheat using multitemporal MODIS EVI images. Remote Sensing, 2019; 11(10): 1191. doi: 10.3390/rs11101191.
Tao J B, Wu W B, Zhou Y, Wang Y, Jiang Y. Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data. Journal of Integrative Agriculture, 2017; 16(2): 348–359.
Pan Y Z, Li L, Zhang J S, Liang S L, Zhu X F, Sulla-Menashe D. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sensing of Environment, 2012; 119: 232–242.
Khan A, Hansen M C, Potapov P V, Adusei B, Pickens A, Krylov A, et al. Evaluating Landsat and RapidEye data for winter wheat mapping and area estimation in Punjab, Pakistan. Remote Sensing, 2018; 10(4): 489. doi: 10.3390/rs10040489.
Li R Y, Xu M Q, Chen Z Y, Gao B B, Cai J, Shen F X, et al. Phenology-based classification of crop species and rotation types using fused MODIS and Landsat data: The comparison of a random-forest-based model and a decision-rule-based model. Soil and Tillage Research, 2021; 206: 104838. doi: 10.1016/j.still.2020.104838.
Shoko C, Mutanga O. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS Journal of Photogrammetry and Remote Sensing, 2017; 129: 32–40.
Delegido J, Verrelst J, Alonso L, Moreno J. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 2011; 11(7): 7063–7081.
Korhonen L, Saputra D H, Packalen P, Rautiainen M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ, 2017; 195: 259–274.
Zhang D Y, Fang S M, She B, Zhang H H, Jin N, Xia H M, et al. Winter wheat mapping based on Sentinel-2 data in heterogeneous planting conditions. Remote Sensing, 2019; 11(22): 2647. doi: 10.3390/ rs11222647.
Nasrallah A, Baghdadi N, Mhawej M, Faour G, Darwish T, Belhouchette H, et al. A novel approach for mapping wheat areas using high resolution Sentinel-2 images. Sensors, 2018; 18(7): 2089. doi: 10.3390/s18072089.
National Earth System Science Data Sharing Infrastructure, National Science & Technology Infrastructure of China. Available: http://www.geodata.cn. Accessed on [2021-03-08].
Gong P. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Chinese Science Bulletin, 2019; 64(6): 370–373.
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Moore R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 2017; 202: 18–27.
Pan L, Xia H M, Yang J, Niu W H, Wang R M, Song H Q, et al. Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine. International Journal of Applied Earth Observations and Geoinformation, 2021; 102: 102376. doi: 10.1016/j.jag.2021.102376.
You N, Dong J, Huang J, Du G, Xiao X. The 10-m crop type maps in Northeast China during 2017–2019. Scientific Data, 2021; 8: 41. doi: 10.1038/s41597-021-00827-9.
Dong J W, Xiao X M, Menarguez M A, Zhang G L, Qi Y W, Tnau D, et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing of Environment, 2016; 185: 142–154.
Xiong J, Thenkabail P S, Tilton J C, Gumma M K, Teluguntla P, Oliphant A, et al. Nominal 30-m cropland extent map of continental africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sensing, 2017; 9(10): 1065. doi: 10.3390/rs9101065.
Zhou B Y, Ge J Z, Sun X F, Han Y L, Ma W, Ding Z S, et al. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain. Acta Agronomica Sinica, 2021; 47(10): 1843–1853. (in Chinese)
Yang J Y, Mei X Y, Yan C R, Liu Q. Study on spatial pattern of climatic resources in North China. Chinese Journal of Agrometeorology, 2010; 31(S1): 1–5. (in Chinese)
Tian H F, Wang L, Niu Z, Qin Y C. Winter wheat planting area extraction based on new remote sensing data at county level. Chinese Agricultural Science Bulletin, 2015; 31(5): 220–227. (in Chinese)
Liu H. Extraction of crop planting structure in Hetao irrigation area based on Sentinel-2 image. Arid Land Resources and Environment., 2021; 35(2): 88–95.(in Chinese)
Wang Y M, Chen C. Remote sensing extraction of wheat planting area in northern Jiangsu based on time series Sentinel-2 satellite image data. Modern Surveying and Mapping. Jiangsu Mapping and Geographic Information Society, 2019; pp.86–89. (in Chinese)
Farr T G, Rosen P A, Caro E. The shuttle radar topography mission. In: Space-Based Observation Technology, 2007; 45(2): RG2004.
Wang S L. Rape and the same phenological crops area extraction based on multi-source remote sensing data in Jiangsu Province. Master dissertation. Yangtze University, 2015; 75p. (in Chinese)
Liu X Y, Zhong X C, Chen C, Liu T, Sun C M, Li D S, et al. Prediction of wheat yield using color and texture feature data of UAV image at early growth stage. Journal of Triticeae Crops, 2020; 40(8): 1002–1007. (in Chinese)
Rouse J W, Hass R H, Scheel J A, Deering D W. Monitoring vegetation systems in the Great Plain with ERTS. In: Proceedings of the 3rd Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 1973; pp.309–317.
Huete A R, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing Environment, 2002; 83(1-2): 195–213.
Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988; 25(3): 295–309.
Mcfeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 1996; 17(7): 1425–1432.
Zha Y, Ni S X, Yang S. An effective approach to automatically extract urban land-use from TM imagery. National Remote Sensing Bulletin, 2003; 7(1): 38–40, 82. (in Chinese)
Wang N, Li Q Z, Du X, Zhang Y, Zhao L C, Wang H Y . Identification of main crops based on the univariate feature selection in Subei. National Remote Sensing Bulletin, 2017; 21(4): 519–530. (in Chinese)
Chan J C W, Paelinckx D. Evaluation of random forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 2008; 112(6): 2999–3011.
Immitzer M, Atzberger C, Koukal T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sensing, 2012; 4(9): 2661–2693.
Immitzer M, Vuolo F, Atzberger C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sensing, 2016; 8(3): 166. doi: 10.3390/rs8030166.
Zhang H Y, Du H Y, Zhang C K, Zhang L P. An automated early-season
method to map winter wheat using time-series Sentinel-2 data: A case study of Shandong, China. Computers and Electronics in Agriculture, 2021; 182: 105962. doi: 10.1016/j.compag.2020.105962.
Rodriguez-Galiano V F, Olmo-Chica M, Abarca-Hernandez F, Atkinson P M, Jeganathan C. Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sensing of Environment, 2012; 121: 93–107.
Genuer R, Poggi J M, Tuleau-Malot C. Variable selection using random forests. Pattern Recognition Letters, 2010; 31(14): 2225–2236.
Congalton R, Green K. Assessing the accuracy of remotely sensed data. Boca Raton, FL, USA: CRC Press, 2019; 200p.
Zhao L C, Shi Y, Liu B, Hovis C. Finer classification of crops by fusing UAV images and Sentinel-2A data. Remote Sensing, 2019; 11(24): 3012. doi: 10.3390/rs11243012.
Congalton R G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 1991; 37(1): 35–46.
Zheng Y, Zhang M, Zhang X, Zeng H W, Wu B. Mapping winter wheat biomass and yield using time series data blended from PROBA-V 100- and 300-m S1 products. Remote Sensing, 2016; 8(10): 824. doi: 10.3390/ rs8100824.
Khan A, Hansen M C, Potapov P V , Adusei B, Pickens A, Krylov A, et al. Evaluating landsat and rapidEye data for winter wheat mapping and area estimation in Punjab, Pakistan. Remote Sens, 2018; 10: 489. doi: 10.3390/rs10040489.
Zhang Q S, Chu Y Y, Xue Y F, Ying H, Chen X H, Zhao Y J, et al. Outlook of China’s agriculture transforming from smallholder operation to sustainable production. Global Food Security, 2020; 26: 100444. doi: 10.1016/j.gfs.2020.100444.
Yang Y J, Tao B, Ren W, Zourarakis D P, Masri B E, Sun Z G, et al. An improved approach considering intraclass variability for mapping winter wheat using multitemporal MODIS EVI images. Remote Sensing, 2019; 11: 1191. doi: 10.3390/rs11101191.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.