In-situ soil texture classification and physical clay content measurement based on multi-source information fusion
Abstract
Keywords: soil texture, soil sensor, electrical conductivity, soil surface image
DOI: 10.25165/j.ijabe.20231601.6918
Citation: Meng C, Yang W, Ren X J, Wang D, Li M Z. In-situ soil texture classification and physical clay content measurement based on multi-source information fusion. Int J Agric & Biol Eng, 2023; 16(1): 203–211.
Keywords
Full Text:
PDFReferences
Shahadat Hossain M, Mustafizur Rahman G K M, Saiful Alam M, Mizanur Rahman M, Solaiman A R M, Baset Mia, M A. Modelling of soil texture and its verification with related soil properties. Soil Research, 2018; 56(4): 421–428.
Coblinski J A, Inda A V, Dematte J A M, Dotto A C, Gholizadeh A, Giasson E. Identification of minerals in subtropical soils with different textural classes by VIS-NIR-SWIR reflectance spectroscopy. CATENA, 2021; 203: 105334. doi: 10.1016/j.catena.2021.105334.
Hollis L O, Turner R E. The tensile root strength of spartina patens varies with soil texture and atrazine concentration. Estuaries and Coasts, 2019; 42: 1430–1439.
Hegde R, Bhaskar B P, Niranjana K V, Ramesh Kumar S C, Ramamurthy V, Srinivas S, et al. Land evaluation for groundnut (Arachis hypogaea L.) production in Pulivendula tehsil, Kadapa district, Andhra Pradesh, India. Legume Research, 2017; 42(3): 326–333.
Li H R, Liu B, Wang R X, Liu W, Fang Y, Yang D L, et al. Particle-size distribution affected by testing method. Journal of Desert Research, 2018; 38(3): 619–627. (in Chinese)
Wang W P, Liu J L, Zhang J B, Li X P. Evaluation and correction of measurement using diffraction method for soil particle size distribution. Transactions of the CSAE, 2014; 30(22):163–169. (in Chinese)
Stefani Fae G, Montes Felipe, Bazilevskaya E, Masip Ano R, Kemanian A R. Making soil particle size analysis by laser diffraction compatible with standard soil texture determination methods. Soil Science Society of America Journal, 2019; 83(4): 1244–1252.
Zhu Y, Zhang Z D, Liu C, Zhang X. Comparison of laser diffraction method and pipette method on soil particle size distribution determination - a case study of variously degraded kastanozem. Research of Soil and Water Conservation, 2018; 25(3): 62–67, 204. (in Chinese)
Fisher P, Aumann C, Chia K, O'Halloran N, Chandra S. Adequacy of laser diffraction for soil particle size analysis. Plos One, 2017; 12(5): e0176510. doi: 10.1371/journal.pone.0176510.
Swetha R K, Bende P, Singh K, Gorthi S, Biswas A, Li B, et al. Predicting soil texture from smartphone-captured digital images and an application. Geoderma, 2020; 376: 114562. doi: 10.1016/j.geoderma.2020.114562.
de Oliveira Morais P A, de Souza D M, Madari B E, de Oliveira A E. A computer-assisted soil texture analysis using digitally scanned images. Computers and Electronics in Agriculture, 2020; 174: 105435. doi: 10.1016/j.compag.2020.105435.
de Oliveira Morais P A, de Souza D M, de Melo Carvalho M T, Madari B E, de Oliveira A E. Predicting soil texture using image analysis. Microchemical Journal, 2019; 146: 455–463.
Sudarsan B, Ji W J, Biswas A, Adamcuk V. Microscope-based computer vision to characterize soil texture and soil organic matter. Biosystems Engineering, 2016; 152: 41–50.
García-Tomillo A, Mirás-Avalos J M, Dafonte-Dafonte J, Paz-González A. Mapping soil texture using geostatistical interpolation combined with electromagnetic induction measurements. Soil Science, 2017; 182(8): 278–284.
Andrade R, Silva S H G, Faria W M, Poggere G C, Barbosa J Z, Guiherme L R G, et al. Proximal sensing applied to soil texture prediction and mapping in Brazil. Geoderma Regional, 2020; 23: e00321. doi: 10.1016/j.geodrs.2020.e00321.
Kargas G, Londra P, Sgoubopoulou A. Comparison of soil EC values from methods based on 1:1 and 1:5 soil to water ratios and ECe from saturated paste extract based method. Water, 2020; 12(4): 1010. doi: 10.3390/w12041010.
Wu K N, Zhao R. Soil texture classification and its application in China. Acta Pedologica Sinica, 2019; 56(1): 227–241.
Pei X S, Meng C, Li M Z, Yang W, Zhou P. Measurement of soil electrical conductivity based on direct digital synthesizer (DDS) and digital oscilloscope. Int J Agric & Biol Eng, 2019; 12(6):162–168.
Pare S, Bhandari A K, Kumar A, Singh G K. An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix. Expert Systems with Applications, 2017; 87: 335–362.
Awais M, Ghayvat H, Pandarathodiyil A K, Ghani W M N, Ramanathan A, Pandya S, et al. Healthcare professional in the loop (HPIL): Classification of standard and oral cancer-causing anomalous regions of oral cavity using textural analysis technique in autofluorescence imaging. Sensors, 2020; 20(20): 5780. doi: 10.3390/s20205780.
Kulkarni A, Carrion-Martinez I, Dhindsa K, Alaref A A, Rozenberg R, van der Pol C B. Pancreas adenocarcinoma CT texture analysis: Comparison of 3D and 2D tumor segmentation techniques. Abdominal Radiology, 2021; 46(4): 1027–1033.
Guan H X, Liu H J, Meng X T, Luo C, Bao Y L, Ma Y Y, et al. A quantitative monitoring method for determining maize lodging in different growth stages. Remote Sensing, 2020; 12(19): 3149. doi: 10.3390/rs12193149.
Wang H P, Hui L. Classification recognition of impurities in seed cotton based on local binary pattern and gray level co-occurrence matrix. Transactions of the CSAE, 2015; 31(3): 236–241. (in Chinese)
Liu Z. Image-based prediction of soil roughness and soil bulk density. Master dissertation. Beijing: China Agricultural University, 2020; pp.37–46. (in Chinese)
Liu Z, Yang W, Li M Z, Zhou P, Yao X Q, Chen Y Q, et al. Soil roughness measuring system combined with image processing. IFAC-PapersOnLine, 2018; 51(17): 689–694.
Dou P, Chen Y B. Remote sensing imagery classification using AdaBoost with a weight vector (WV AdaBoost). Remote Sensing Letters, 2017; 8(8): 733–742.
Ge X, Sun J, Lu B, Chen Q S, Xun W, Jin Y T. Classification of oolong tea varieties based on hyperspectral imaging technology and BOSS-LightGBM model. Journal of Food Process Engineering, 2019; 42(8): e13289. doi: 10.1111/jfpe.13289.
Huang M W, Chen C W, Lin W C, Ke S W, Tsai C F. SVM and SVM ensembles in breast cancer prediction. Plos One, 2017; 12(1): e0161501. doi: 10.1371/journal.pone.0161501.
Wu M, Lyu B L. Prediction of viscosity of ternary tin-based lead-free solder melt using BP neural network. Soldering and Surface Mount Technology, 2020; 32(3): 173–180.
Samat A, Liu S C, Persello C, Li E Z, Miao Z L, Abuduwaili J. Evaluation of ForestPA for VHR RS image classification using spectral and superpixel-guided morphological profiles. European Journal of Remote Sensing, 2019; 52(1):107–121.
Mantas C J, Castellano J G, Moral-García S, Abellán J. A comparison of random forest based algorithms: random credal random forest versus oblique random forest. Soft Computing, 2019; 23(5): 10739–10754.
Ou X, Pan W, Xiao P. In vivo skin capacitive imaging analysis by using grey level co-occurrence matrix (GLCM). International Journal of Pharmaceutics, 2014; 460(1-2): 28–32.
Demattê J A M, Alves M R, da Silva Terra F, Bosquillia R W D, Fongaro C T, da Silva Barros P P. Is it possible to classify topsoil texture using a sensor located 800 km away from the surface? Revista Brasileira De Ciência Do Solo, 2016; 40: e0150335. doi: 10.1590/ 18069657rbcs20150335.
Vibhute A D, Kale K V, Dhumal R K, Mehrotra S C. Soil type classification and mapping using hyperspectral remote sensing data. In: 2015 International Conference on Man and Machine Interfacing (MAMI), Bhubaneswar: IEEE, 2016; pp.1–4. doi: 10.1109/MAMI.2015.7456607.
Taghizadeh-Mehrjardi R, Sarmadian F, Minasny B, Triantafilis T, Omid M. Digital mapping of soil classes using decision tree and auxiliary data in the ardakan region. Arid Land Research and Management, 2014; 28(2): 147–168.
Dharumarajan S, Hegde R. Digital mapping of soil texture classes using Random Forest classification algorithm. Soil Use and Management, 2020; 38(1): 135–149.
Barman U, Dev Choudhury R. Soil texture classification using multi class support vector machine. Information Processing in Agriculture, 2019; 7(2): 318–332.
Aitkenhead M, Cameron C, Gaskin G, Choisy B, Coull M, Black H. Digital RGB photography and visible-range spectroscopy for soil composition analysis. Geoderma, 2018; 313: 265–275.
Qi L, Adamchuk V, Huang H H, Leclerc M, Jiang Y, Biswas A. Proximal sensing of soil particle sizes using a microscope-based sensor and bag of visual words model. Geoderma, 2019; 351:144–152.
Sudarsan B, Ji W J, Adamchuk V, Biswas A. Characterizing soil particle sizes using wavelet analysis of microscope images. Computers and Electronics in Agriculture, 2018; 148: 217–225.
Sudarsan B, Ji W J, Biswas A, Adamchuk V. Microscope-based computer vision to characterize soil texture and soil organic matter. Biosystems Engineering, 2016; 152: 41–50.
Benedet L, Faria W M, Silva S H G, Mancini M, Demattê J A M, Guilherme L R G, et al. Soil texture prediction using portable X-ray fluorescence spectrometry and visible near-infrared diffuse reflectance spectroscopy. Geoderma, 2020; 376: 114553. doi: 10.1016/ j.geoderma.2020.114553.
Wang S Q, Li W D, Li J, Liu X S. Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion. Soil Science, 2013; 178(11): 626–638.
Kelley J, Higgins C W, Pahlow M, Noller J. Mapping soil texture by electromagnetic induction: a case for regional data coordination. Soil Science Society of America Journal, 2017; 81(4): 923–931.
Bañón S, Álvarez S, Bañón D, da Ortuño M F, Sánchez-Blanco M J. Assessment of soil salinity indexes using electrical conductivity sensors. Scientia Horticulturae, 2021; 285: 110171. doi: 10.1016/ j.scienta.2021.110171.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.