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Abstract: The area of the pig’s face contains rich biological information, such as eyes, nose, and ear.  The high-precision 

detection of pig face postures is crucial to the identification of pigs, and it can also provide fundamental archival information 

for the study of abnormal behavioral characteristics and regularities.  In this study, a series of attention blocks were embedded 

in Feature Pyramid Network (FPN) for automatic detection of the pig face posture in group-breeding environments.  Firstly, 

the Channel Attention Block (CAB) and Position Attention Block (PAB) were proposed to capture the channel dependencies 

and the pixel-level long-range relationships, respectively.  Secondly, a variety of attention modules are proposed to effectively 

combine the two kinds of attention information, specifically including Parallel Channel Position (PCP), Cascade Position 

Channel (CPC), and Cascade Channel Position (CCP), which fuse the channel and position attention information in both 

parallel or cascade ways.  Finally, the verification experiments on three task networks with two backbone networks were 

conducted for different attention blocks or modules.  A total of 45 pigs in 8 pigpens were used as the research objects.  

Experimental results show that attention-based models perform better.  Especially, with Faster Region Convolutional Neural 

Network (Faster R-CNN) as the task network and ResNet101 as the backbone network, after the introduction of the PCP 

module, the Average Precision (AP) indicators of the face poses of Downward with head-on face (D-O), Downward with lateral 

face (D-L), Level with head-on face (L-O), Level with lateral face (L-L), Upward with head-on face (U-O), and Upward with 

lateral face (U-L) achieve 91.55%, 90.36%, 90.10%, 90.05%, 85.96%, and 87.92%, respectively.  Ablation experiments show 

that the PAB attention block is not as effective as the CAB attention block, and the parallel combination method is better than 

the cascade manner.  Taking Faster R-CNN as the task network and ResNet101 as the backbone network, the heatmap 

visualization of different layers of FPN before and after adding PCP shows that, compared with the non-PCP module, the PCP 

module can more easily aggregate denser and richer contextual information, this, in turn, enhances long-range dependencies to 

improve feature representation.  At the same time, the model based on PCP attention can effectively detect the pig face posture 

of different ages, different scenes, and different light intensities, which can help lay the foundation for subsequent individual 

identification and behavior analysis of pigs. 
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1  Introduction

 

The area of the pig face contains rich and valuable biological 

information that reflects the welfare status, well-being conditions, 

and social interactions[1,2].  Different facial postures contain 

information from different angles, such as the head-on face with 

pig nostrils, while only a single eye on the lateral face.  Effective 

detection of the face area is conducive to the identification of pigs 

and can timely detect abnormal behavior according to different 

facial postures, further ensuring the health of pigs.  Further 

significant impact on the economics of pig farms. 

As modern farming continues to expand, continuous physical 

monitoring of animals is time-consuming, subjective, and 
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impractical[3].  Some studies have turned to sensor techniques that 

can serve as an aid to the ability to automatically monitor 

biological responses in animals[4].  However, the sensing devices 

are invasive to the animal and can damage the animal’s epidermis 

or internal organs.  Computer vision-based techniques can provide 

non-contact, low-cost, and non-invasive methods, and have been 

widely used in livestock-related research[5]. 

In recent years, computer vision-based methods have attracted 

significant interest in the field of pig-related research, including, 

automatic recognition of pig posture[6], pig body composition 

estimation[7], pig aggressive behavior detection[8], piglet stress 

prediction[9], and pig target tracking[10].  However, when the 

textures of foreground and background objects are very similar, the 

above traditional methods are difficult to produce satisfactory 

results.  The main reasons are the following two limitations: 1) 

Uneven light conditions, and environmental information such as 

urine stains, manure, pigpen, and other debris have brought great 

challenges to the research on pig targets.  2) The above methods 

mainly rely on morphological features such as color, shape, or 

texture for feature extraction, and the selection of thresholds or 

improper selection of feature equations will lead to the fluctuation 
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of performance.  Deep learning-based techniques can 

automatically extract information without the need to manually 

construct feature equations for key information extraction, and 

have achieved remarkable performance in many fields[11,12]. 

Convolutional neural network (CNN), as a representative deep 

learning technology, has strong feature extraction ability and has 

been widely applied to precision agriculture[13], such as the 

detection of dairy cows[14], goats detection[15], weeds 

identification[16], and other fields.  In particular, CNN-based 

technology has also been applied in the fields of individual pigs, 

such as recognizing abnormal behaviors of pigs[17], classification of 

drinking and drinker-playing in pigs[18], segmentation of 

group-raised pigs[19-21], counting or tracking pigs[22], and detecting 

pigs standing and lying down postures[23,24].  However, the 

above-mentioned CNN-based studies on pig have two 

shortcomings: 1) From a research point of view, the above 

researches mainly focus on pig’s overall posture or behavior 

detection, and there is no relevant literature on facial posture with 

richer biological information.  2) In terms of research methods, 

only the open-domain CNN models are directly or fine-tuned to the 

field of pigs, but there is a certain difference between pig images 

and other natural images in practice, which leads to limited 

performance improvement of the corresponding model. 

Given the deficiencies in the fields mentioned above, the pig 

face area was selected with rich identification parts as the research 

subject.  To the best of the general knowledge, there is currently 

no relevant literature on the detection of facial posture.  The only 

related researches focus more on the recognition of pig facial 

identity information[1,2], but in practice, the acquisition of the pig 

face is inherently challenging.  Comparing the two tasks, the 

detection of face posture can be regarded as forward-looking work 

for pig face recognition tasks.  To adjust the structure of CNN, the 

attention mechanism is introduced into a variety of deep learning 

tasks.  Tong et al.[25] used channel attention-based DenseNet[26] 

for scene classification of remote sensing images.  Chen et al.[27] 

proposed a spatial attention residual network to repair the 

low-resolution facial structure.  Besides, many researchers used 

the Convolutional Block Attention Module (CBAM)[28], Bottleneck 

Attention Module (BAM) [29], Spatial-Channel Squeeze & 

Excitation (SCSE)[30], and Dual Attention Network (DANet)[31] to 

recalibrate the feature map from the channel and spatial dimensions.  

Inspired by these works, the attention mechanism mainly based on 

three reasons was introduced in this study: 1) The attention-based 

mechanism can effectively distinguish the specific information, 

further focus on the regions that are conducive to the detection of 

face posture, and suppress the message as manure, and pigpen to 

improve the detection accuracy of the face; 2) The pig face area 

contains information about the nose, eyes, and ears compared with 

other parts.  Paying more attention to these areas can improve the 

performance of face posture detection; 3) The attention mechanism 

has achieved good results in other open domains, so it is of 

practical significance to introduce it into the pig face posture.  

A novel feature pyramid network (FPN) incorporating multiple 

attention modules was proposed to detect facial posture in 

group-housed pigs in this study.  In particular, the Faster Region 

Convolutional Neural Network (Faster R-CNN), Cascade R-CNN, 

and Libra Faster R-CNN were chosen as task networks and 

ResNet50 and ResNet101 as backbone networks for detailed 

comparison experiments.  In order to capture the channel 

dependencies and the pixel-level pairwise relationships, 

respectively, the channel and position attention blocks are further 

introduced into the FPN framework.  Meanwhile, various ways of 

cross-fusion of the two attention blocks are deeply explored, and 

the Parallel Channel Position (PCP), Cascade Position Channel 

(CPC), and Cascade Channel Position (CCP) modules are 

separately constructed to fuse the channel and position attention 

information in a parallel or cascade manner, respectively.  Finally, 

Faster R-CNN-R101 was taken as the experimental model to 

visualize the heatmaps at different stages of FPN before and after 

adding the PCP module, and visualize the prediction results at 

different ages, different degrees of adhesion, and different light 

intensities. 

Overall, the contributions can be summarized as follows: 

1) Three task networks and two backbone networks are 

selected for facial posture detection of group-housed pigs; 

2) The channel and position-based attention blocks are 

designed to capture the channel dependency and the pixel-level 

pairwise relationship, respectively; 

3) Explore the fusion of parallel and cascade manners to find 

the best combination of two kinds of attention information; 

4) Visualize the attention heatmaps before and after adding the 

PCP module in FPN, and further visualize the prediction results of 

different stages of age and scenes to verify the robustness of 

attention mechanisms.   

2  Definition of the pig face postures and data 

preparation 

2.1  Definition of the pig face postures 

The combination of the position, orientation, and connection 

relationship of various parts of the body is referred to as the posture, 

and if it is applied to the face area, the corresponding concept 

becomes the face pose.  For individual pigs, the common facial 

postures are listed in Table 1.  Among them, the “head position” is 

subdivided into “downward”, ”level” and “upward” according to 

the angle between the neck and the lowest point of the mouth, and 

“face position” is subdivided into “head-on” and “lateral” 

according to the number of pig eyes. 
 

Table 1  The definition of the pig face postures 

Posture category Posture diagram Posture description 

Downward with 

head-on face (D-O) 

 

Two eyes are in the field of view,  

and the angle is greater than −10° 

Downward with 

lateral face (D-L) 
 

Only one eye is in the field of view,  

and the angle is greater than −10° 

Level with head-on 

face (L-O) 
 

Two eyes are in the field of view, and 

the absolute angle is no more than 10° 

Level with lateral 

face (L-L) 
 

Only one eye is in the field of view, and 

the absolute angle is no more than 10° 

Upward with head-on 

face (U-O) 

 

Two eyes are in the field of view,  

and the angle is greater than +10° 

Upward with lateral 

face (U-L) 
 

Only one eye is in the field of view,  

and the angle is greater than +10° 

Note: Different degrees represent the angle between the lowest point of the 

mouth and the horizontal direction of the neck. 
 

2.2  Data preparation 

2.2.1  Animals and housing 

“The East Songjiazhuang Village Pig Farm” was selected  
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(Jicun Town, Fenyang City, Shanxi Province, China, it was defined 

as ESV-Farm) and the “the Experimental Animal Management 

Center of Shanxi Agricultural University” (Taigu City, Shanxi 

Province, China, it was defined as EAMC-Farm) as the 

experimental data collection base.  The group-raised Edelschwein 

and Landrace mixed breed pigs were selected as research 

individuals and the body sizes of the pigs were different, the ages 

ranged from 20 to 105 d.  Each pigpen of ESV-Farm measured 

approximately 8.75 m3 (3.5 m×2.5 m×1.0 m) and for the 

EAMC-Farm, the area of pigpens was 10.8 m3(4.0 m×2.7 m×1.0 m, 

as shown in Figure 1).  In order to improve the generalization 

ability and robustness of models, the data were collected in two 

periods: June 1, 2019 (sunny with strong light, 23℃-29℃) and 

October 13, 2019 (cloudy with weak light, 10℃-19℃), 

respectively.  A total of 45 pigs spread across eight pigpens were 

monitored from 9:00 to 14:00, and each pigpen was captured for a 

period of 64 min and 35 s videos.  To obtain the horizontal view 

images, the camera (Canon 700D with anti-shake lens) was used 

and mounted on a tripod.  The video frame rate was 25 fps and the 

resolution is 1920×1080 pixels.  In order to ensure the continuity 

of the data, two videos with a duration of more than 30 min were 

selected as the initial data for each pigpen. 

2.2.2  Data collection methods 

Most studies used a top-view manner for pig data collection.  

Compared with the top-view acquisition method, the horizontal 

view was innovatively chosen to acquire experimental data.  

Taking EAMC-Farm as an example, the corresponding data 

collection scenario and its configuration parameters are shown in 

Figure 1.  Group breeding pigs have the characteristics of poor 

movement trajectory controllability and strong adhesion.  

Therefore, the distance between the camera lens and the pigpens 

was adjusted to a range of 0 to 0.3 m.  At the same time, in order 

to obtain images with different horizontal perspectives, the height 

of the camera tripod from the ground is set from 0.5 to 1.3 m. 

Compared with the top-view data collection manner, the 

horizontal view method has the following advantages: 1) It can 

effectively capture detailed key parts, such as the face or hoof, 

which are more biologically informative.  The top view mainly 

focuses on obtaining the back or abdomen information, which is 

inconsistent with the face posture detection task; 2) The distance 

between the lens and the pigs is convenient to adjust, and it is easy 

to obtain various condition data; 3) The horizontal viewing angle is 

consistent with the human observing angle of animals, so the model 

trained on the collected data is more suitable for transferring to 

mobile applications. 

 
Note: The distance between the tripod and the pigpen is floating between 0-   

0.3 m, and the height of the tripod is floating between 0.5-1.3 m. 

Figure 1  Platform of data collection for the test of this study 
 

2.2.3  Data pre-processing 

The collected videos cover different scenes, viewing angles, 

the intensity of lighting changes, and different age stages.  To be 

able to obtain suitable model input, the following operations were 

performed on the acquired video to preprocess the datasets.  The 

entire data process is shown in Figure 2. 

 
Note: The first column represents the frame image cropped from the original video, the second column denotes the images after reducing the resolution 

size, and the third column means the labeling results after data enhancement processing..  The legend labels mean different postures of pigs.  D-O: 

Downward with the head-on face; D-L: Downward with the lateral face; L-O: Level with the head-on face; L-L: Level with the lateral face; U-O: 

Upward with the head-on face; U-L: Upward with the lateral face. 

Figure 2  Data pre-processing process of pig images of this study  
 

1) Firstly, the videos were cropped every 25 frames to obtain 

1933 images with a resolution of 1920×1080 pixels.  Then, fix the 

aspect ratio to 2:1 to adjust the image size to 2048×1024 pixels, 

and fill the blank areas with black pixels.  Afterward, in order to 

reduce the memory footprint, global scaling and coordinate 

transformation operations are performed to convert the resolution 

to 512×256 pixels.  The whole process is shown in Figure 2.  

2) In order to obtain more abundant scene data, data 

augmentation is performed on the basis of the limited amount of 

data obtained, thereby improving the robustness and generalization 

of the trained models.  The data augmentation operations include 

four dynamic ways of brightening, mirroring, adding noise, or 

randomly occluding ways.  For each augmented image, each 

augmentation operation is performed with a probability of 0.5 and 

contains one to four different transformations.  For the brightening 

operation, randomly change the brightness value between 0.8 and 

1.2, greater than 1 for dimming, and less than 1 for brightening.  

For mirroring, the horizontal mirror symmetric method was 

selected.  For noise, the Gaussian noise was added.  For random 

occlusion, the face coverage area was only randomized.  The 
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whole process is shown in Figure 2. 

3) After the above two steps, a total of 3866 images were 

obtained, which were randomly divided into training, validation, 

and test datasets, with corresponding numbers images of 1 933 579, 

and 1354 images respectively.  Before entering the model, the 

mean value (123.675, 116.28, 103.53) and variance (58.395, 57.12, 

57.375) of the three channels were taken to normalize the image 

values to speed up model convergence.  In addition, the number of 

individuals with different face postures in the training, validation, 

and test datasets is shown in Table 2. 
 

Table 2  Number of individuals of different facial postures 

Datasets D-O D-L L-O L-L U-O U-L 

Train 722 1512 950 2027 494 747 

Val 202 463 311 586 160 269 

Test 465 1086 727 1442 379 535 
 

2.3  Pig face posture detection model 

2.3.1  Three types of task models 

Given the success of the R-CNN architecture, the combination 

of proposal-based detectors and region classifiers has dominated 

the two-stage approach to object detection problems[32,33].  The 

Faster R-CNN[34] further accelerates by introducing a Region 

Proposal Network (RPN)[34], and its simplified model structure 

architecture is shown in Figure 3a.  To alleviate the contradiction 

of scale mismatch between the RPN receptive fields and actual 

object size, the FPN was introduced[35] into the Faster R-CNN to 

detect proposals at multiple scales.  In general, the performance of 

Faster R-CNN is highly dependent on the selection of the IOU 

(Intersection Over Union)[36] threshold, setting a larger IOU 

threshold will lead to an exponential decrease in the number of 

positive samples, and setting a smaller IOU threshold will bring 

more noise sample, the selection of the threshold is a 

hyperparameter, which is difficult to obtain in practice.  Cascade 

R-CNN[37] can be used to address this problem, as shown in Figure 

3b, in the sequential training process in different stages, the output 

of the previous stage is used as the training input of the next stage.  

The output of a detector trained with a smaller IOU threshold 

favors the training of a detector with the next higher IOU threshold.  

Cascade R-CNN consists of four stages, one RPN and three 

detectors with different IOU thresholds {0.5, 0.6, 0.7}, 

corresponding to H1-H3 in Figure 3b.  However, the above Faster 

R-CNN and Cascade R-CNN cannot solve the problem of sample 

imbalance.  The Libra R-CNN[38] proposes IOU-balanced 

sampling, which mines hard samples according to IOU with 

assigned ground truth to address the sample-level imbalance 

problem, and its model architecture is similar to Faster R-CNN. 

 
a. Faster R-CNN   b. Cascade R-CNN 

 

Note: I, FPN, Pool, Hi, Bi, RPN, and Ti (i=0, 1, 2, 3) denote input image, feature pyramid network, region-wise feature extraction, network head, 

bounding box, region proposal network, classification, respectively.  “B0” is the proposal in all architecture. 

Figure 3  Architecture of Faster R-CNN and Cascade R-CNN 
 

2.3.2  Feature pyramid network 

Feature context information is quite important for the detection 

of pig face posture.  Existing CNN models usually learn deep 

features of the object by stacking multiple convolutional and 

pooling layers.  However, the area of the pig face has large 

variations in scale, shape, and location.  Traditional methods 

usually directly use bottom-up convolution and pooling operations, 

which may be difficult to effectively deal with the challenges posed 

by complex changes in face regions.  For the feature extracted by 

the stacked convolutional network, the low-level features lack 

semantics but have rich location contents, while the high-level 

features have rich semantic information but lack location 

knowledge.  Fusion of high and low-level features can effectively 

alleviate the contradiction between semantic and location 

information that cannot be improved at the same time.  FPN (a 

component in Figure 3) can extract feature maps of different scales 

at multiple levels, and its construction involves a bottom-up 

pathway, a top-down pathway, and lateral connections.  The FPN 

architecture combines low-resolution, semantically strong features 

with high-resolution, semantically weak features through the 

top-down pathway and lateral connections.  The FPN model structure 

using ResNets[39] as the backbone network is shown in Figure 4. 

2.3.3  Feature fusion with different attention modules 

A novel pig face posture detection method was proposed which  

consists of a pyramid feature extraction module (as shown in 

Figure 4) and a series of attention modules to capture 

context-aware multi-scale multi-receptive field features.  The 

component architecture with different attention modules is shown 

in Figure 5 (corresponding to the black and bold open circles in 

Figure 4). 

Local feature extractor.  The standard convolutional layer 

learns the local feature from the eight adjacent feature vectors, 

corresponding to the red dashed area in Figure 5a, it was denoted as 

floc(*) in this study.  To obtain richer semantic information, two 

convolutional layers were performed with corresponding 

convolution kernel sizes of 1×1 and 3×3, respectively.  In Figure 

5b, for the red dot region, the standard convolution can obtain the 

semantic information related to the pig’s eyes.  Therefore, local 

features are beneficial to the extraction of deep semantic features. 

Global context extractor.  Different receptive field sizes are 

helpful for information extraction for objects of different sizes.  In 

order to increase the receptive field and reduce the amount of 

calculation, the conventional convolution operation adopts the 

down-sampling operation, however, it will lead to the problem that 

the spatial resolution is significantly reduced.  Atrous dilated 

convolution has relatively large receptive fields and can effectively 

learn the surrounding context without losing the resolution and 

adding extra parameters.  Inspired by Context Guided Network 
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(CGNet)[40], a 3×3 atrous convolutional layer was adopted as the 

global context extractor fglo(*), corresponding to the blue dashed 

area in Figure 5a.  As shown in Figure 5b, when the red areas 

were focused on, it is difficult to classify the categories to which 

the red dots belong.  While in Figure 5c, the green box region is 

the surrounding context of the red dot, it is easier to identify the 

green area of the pig face when both the red dot and its surrounding 

context are considered.  For Figure 5d, if the receptive field (blue 

region) is expanded, the more global context as well as the red dot 

and its surrounding (green region) can be further captured.  In 

addition, the receptive fields of different scales can better separate 

the adhering pig face regions. 

 
Note: 0.5x represents down-sampling operation; 2x represents up-sampling operation; Ci, Mi, and Pi represent the corresponding the feature map 

of the ith component block of Bottom-up, Top-down, and Stage-output, respectively. 
Figure 4  Architecture of feature pyramid network 

 
a. Attention component  b-d. An example to prove the importance of global information 

Note: Conv: Convolution; BN: BatchNorm; ReLU: Rectified Linear Unit; floc(*): Local feature extractor; fglo(*): Global context extractor; fatt(*): Attention module. 
Figure 5  An overview of the attention component with different attention modules 

 

Attention module.  It is significant to perform deep filtering 

on features extracted by local or global context extractors.  The 

standard convolutional network simply and linearly superimposes 

features from different sources, which usually leads to redundant 

information and degrades prediction performance.  The attention 

mechanisms enable the neural network to focus more on the 

regions that are beneficial to the task and exert better attention on 

the key regions, where channel and position attention can capture 

the channel dependencies and the pixel-level pairwise relationship, 

respectively.  To effectively combine the two types of attention 

mechanisms, a series of attention modules were implemented, such 

as the Parallel Channel Position (PCP) attention module, Cascade 

Position Channel (CPC) attention module, and Cascade Channel 

Position (CCP) attention module.  PCP fuses the two-way parallel 

attention information, while CPC and CCP are cascade attention 

patterns to explore the degree of influence of channel and position 

attention execution order on detection results. 

2.3.4  Channel attention block (CAB) 

Each channel of a feature map can be considered as a response 

to a specific class, different channels respond to different semantic 

categories, and the responses between different semantic responses 

are associated with each other[41].  The channel attention 

mechanism can emphasize the interdependence between feature 

maps and improve the feature representation for specific classes by 

exploiting the inter-interdependencies among channels.  Inspired 

by DANet[31] and CBAM[28], An enhanced channel attention block 
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was constructed to explicitly encode inter-channel dependencies.  

The channel attention block consists of two stages (Stage #1 and 

Stage #2), and the specific operations are shown in Figure 6. 

Stage #1 can be summarized in two procedures. 

1) Given a local feature map IΩC×H×W first reshapes I to 

ΩC×HW and performs a convolution operation with a kernel size of 

1×1 to generate the feature map AΩl×H×W, where C, H, W 

represent the number of channels and the height and width of the 

feature map, respectively.  Subsequently, A is reshaped and 

transposed to BΩHW×1×1.  Next, a matrix multiplication was 

performed between reshaped I and B.  Finally, apply the softmax 

function to obtain the channel-wise attention weights.  The 

operations are defined as follows. 

1

( )

( )

t
t C

s ts

exp W
x

exp W W





               (1) 

,1

HW

t t i ii
W I B


                   (2) 

where, It,I is the tth row and ith column of the reshape I, Wt 

measures the tth channel’s value impacted by the reshaped I, and B.  

xt is the tth channel’s value after softmax operation. 

2) Perform an element-wise multiplication between the input 

feature I and the channel attention map X to get the result 

1
cab C H W

stg#F   . 

Stage #2 can be abstracted into two procedures as follows: 

1) First, the input feature I was reshaped to ΩC×HW, and then  

perform a matrix multiplication between I and the transpose feature 

I.  Then, apply a softmax layer to obtain the channel attention map 

YΩC×C.  The element yt,s of Y denotes the sth channel’s impact 

on the tth channel. 

,

1

( )

( )

s t
t s C

s ts

exp I I
y

exp I I


 


 
               (3) 

The denominator can map the interdependent values from 0 to 

1. 

2) Next we perform a matrix multiplication between the 

transpose of Y and the reshape I, further reshaping the result 

WHCcab

stg#F 2
. 

The element-wise addition was applied between Stage #1 and 

Stage #2 output, further getting the results of CAB as follows. 

#1 #2
cab cab

cab stg stgF F F                  (4) 

2.3.5  Position attention block (PAB) 

Different from channel attention, position attention focuses on 

“where” information, which is more refined than channel attention 

and can complement channel attention.  In order to model rich 

contextual content over local features, inspired by DANet[31] and 

CBAM[28], an enhanced position attention block (PAB) was 

introduced.  The PAB is able to encode wider contextual 

information into local features, further enhancing the feature 

expression ability.  The position attention block consists of two 

stages (Stage #1 and Stage #2) as in Figure 7. 

 
Note: The feature maps are denoted as feature dimensions, e.g.  C×H×W denotes a feature map with channel number C, height H, and width W. 

 represents matrix multiplication,  denotes element-wise multiplication, and ○+ denotes element-wise addition. 
Figure 6  An overview of the channel attention block 

 
Figure 7  An overview of the position attention block.  The symbol annotations are consistent with Figure 6 

 

To compute the position attention of Stage #1, the following 

two steps were applied: 

1) the average-pooling AP and the max-pooling MP were the 

first performed operations along the channel dimension and 
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concatenate the corresponding results together to generate efficient 

feature fusion results.  Then, apply a convolutional layer operation 

with a convolution kernel size of 3×3 to generate the position 

attention map XΩl×H×W.  The entire process of position attention 

calculation is shown in Equation (5). 

3 3( [ ; ])x ap mpF conv F F                (5) 

where, Fap and Fmp denote the average-pooling and max-pooling, 

respectively.  conv3×3 represents the convolutional operation with 

the kernel size 3×3.  σ represents the sigmoid activation function.  

Fx denotes the attention weights of X. 

2) Then, an element-wise multiplication was perfomed 

between the input feature I and the position attention map X to get 

the result 1
pab C H W

stg#F   . 

Stage #2 can be summarized into two procedures: 

1) Given the local feature map IΩC×H×W, Stage #2 first 

applies two convolutional layers with the kernel size of 3×3 on I to 

generate two independent feature maps A and B, respectively, 

where {A, B}ΩC×H×W.  Then A and B were reshaped to {A, 

B}ΩC×HW.  After that, a matrix multiplication was performed 

between the transpose of A and the feature map B, and further 

apply a softmax activation function to get the position attention 

map YΩHW×HW, the acquisition of each attention value in the 

attention map Y is shown in Equation (6): 

,

1

( )

( )

s t
t s HW

s ts

exp A B
y

exp A B


 


 
               (6) 

where, yt,s
 
represents the sth position impact on the tth position. 

2) A matrix was performed multiplication between the reshape 

of I and the position attention map Y, then reshape the result 

2
pab C H W

stg#F   . 

The element-wise addition was further conducted in Stages #1 

and #2 to get the real output of the PAB block. 

#1 #2
pab pab

pab stg stgF F F                 (7) 

3  Experiment 

3.1  Implementation details and evaluation metrics 

3.1.1  Implementation details 

All experiments are implemented on PyTorch and 

mmdetection[42] for fairness of comparison The backbone networks 

used in the experiments are ResNet50 and ResNet101, which are 

abbreviated as R50 and R101 for clarity.  For the train detectors 

with 16 GB Tesla V100 GPU, the batch size was set to 8, a total of 

12 epochs were trained, and the initial learning rate was set to 0.02.  

All models are trained by Stochastic Gradient Descent (SGD) 

optimizer with a weight decay parameter of 1e−4 and momentum 

set to 0.9. 

3.1.2  Evaluation metrics 

The standard VOC-style[43] AP was selected as the evaluation 

metric.  In order to measure the overall performance, the six types 

of face posture AP were averaged to get mean AP (mAP).  The 

definitions of AP and mAP are as follows: 

P
tp

tp fp



                  (8) 

R
tp

tp fn



                  (9) 

1

0
AP P Rdr                  (10) 

i
( )

1
mAP AP

iCC CC 
              (11) 

where, tp represents the number of detection boxes for which both 

the prediction and ground truth are positive samples.  fp represents 

the number of detection boxes that are predicted to be positive 

samples but are actually negative samples.  fn represents the 

number of detection boxes that predicted results are negative 

samples but actually positive samples.  Taking D-O as an example, 

categories D-L, L-O, L-L, U-O, and U-L represent negative 

samples, and category D-O represents positive samples.  P and R 

represent the precision and the recall of specified categories, 

respectively.  C denotes the total number of pig face postures, C 

was set to six here. 

3.2  Detection performance of different backbone networks 

and task networks with different attention blocks 

3.2.1  Compare with different attention blocks in AP index 

Different backbone networks can extract feature information of 

different depths.  To explore the influence of backbone networks 

on various task networks, two basic backbones were selected, 

ResNet50 and ResNet101[39], and three task networks, Faster 

R-CNN, Cascade R-CNN, and Libra Faster R-CNN to conduct 

experiments.  In addition, the effects of adding CBAM[28], 

BAM[29], and DANet[31] attention modules were shown to FPN.  

Furthermore, the results of different attention blocks were 

presented to explore their effectiveness, and the corresponding 

results are listed in Table 3. 

Different Backbone Networks: Although deeper pre-trained 

network models based on ResNet101 may be slightly inferior to 

models based on ResNet50 in some pose classifications, overall the 

ResNet101-based model with or without attention blocks 

outperformed models based on ResNet50 with the same task 

networks.  Taking Faster R-CNN as the task network as an 

example, using ResNet101 produces a result of 83.73% in mAP, 

which brings a 2.77% improvement over using the ResNet50 

backbone network.  For different pig face posture categories, 

compared with ResNet50-based Faster R-CNN, the 

ResNet101-based Faster R-CNN significantly improves the 

performance by 2.22%, 3.6%, 5.76%, 5.32%, 7.97%, and 5.21% in 

D-O, D-L, L-O, L-L, U-O, and U-L, respectively.  The main 

reason is that ResNet101 contains more layers, which can extract 

stronger semantic and richer contextual information. 

Different Task Networks: Compared with Faster R-CNN, 

using Cascade R-CNN as the task network and using ResNet50 and 

ResNet101 as the backbone network can stably bring 1.5% and 

0.99% mAP improvement, respectively.  Specific to the single pig 

face posture category, the performance of Cascade R-CNN has 

been improved more than that of Faster R-CNN.  Specifically, on 

the D-O, D-L, L-O, L-L, U-O, and U-L categories, the 

improvements are 1.55%, 1.45%, 0.09%, 1.15%, 2.35%, and 2.43%, 

respectively.  The reason is that, compared to Faster R-CNN, the 

Cascade R-CNN consists of a series of detectors that are trained in 

series by increasing the IOU thresholds, using the output of the 

previous detector as the input of the next higher quality detector, 

and continuously filter out negative samples to improve 

performance. 

Compare with existing attention models: Adding CBAM, 

BAM, and DANet attention blocks in existing research to FPN can 

improve the model performance to a certain extent.  Compared 

with CBAM and BAM, adding DANet can bring greater 

improvement.  Specifically, using Faster R-CNN as the task 

network and ResNet50 as the backbone network, in terms of mAP, 

adding DANet is 1.69% and 0.76% higher than adding CBAM and 

BAM, respectively.  In addition, the effect of the BAM attention 
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block is better than the CBAM attention block.  This is mainly 

because BAM uses a parallel manner to combine spatial and 

channel attention, while CBAM uses a cascade combination 

manner, which is prone to cascade errors, causing the accumulation 

of error information to affect the experimental effect.  Although 

CBAM, BAM, and DANet attention modules can all improve the 

original model, the proposed PCP module in this study can surpass 

the above three attention modules under various backbone network 

and task network combinations, proving the effectiveness and 

robustness of the PCP module. 
 

Table 3  Different task networks’ performance under different attention blocks 

Model Backbone Attention D-O D-L L-O L-L U-O U-L mAP 

Faster R-CNN 

R50 

NONE 83.83 83.93 80.50 81.35 75.06 81.07 80.96 

CBAM 84.36 84.28 82.30 83.24 77.49 82.37 82.34 

SCSE 84.98 85.12 83.14 83.67 80.18 82.55 83.27 

DANet 85.33 85.18 83.96 85.02 81.24 83.47 84.03 

CAB 84.91 84.66 81.73 82.96 74.82 81.35 81.74 

PAB 83.71 84.37 80.49 81.99 77.33 80.78 81.45 

PCP 86.60 86.98 86.26 86.67 83.03 86.28 85.97 

R101 

NONE 86.05 87.53 84.01 83.41 77.87 83.52 83.73 

CBAM 89.32 88.60 88.22 88.95 83.28 85.29 87.28 

BAM 89.88 89.23 88.79 88.92 84.17 85.92 87.82 

DANet 90.34 89.46 89.67 89.38 84.76 86.32 88.32 

CAB 89.37 88.49 87.76 88.60 82.29 85.13 86.94 

PAB 88.00 88.49 87.01 87.38 83.65 84.98 86.59 

PCP 91.55 90.36 90.10 90.05 85.96 87.92 89.32 

Cascade R-CNN 

R50 

NONE 85.38 85.38 80.59 82.50 77.41 83.50 82.46 

CBAM 86.38 86.43 84.30 85.62 80.23 85.62 84.76 

BAM 86.42 86.92 84.22 85.99 80.66 85.48 84.95 

DANet 87.66 87.21 85.68 86.18 82.13 85.79 85.78 

CAB 86.20 85.65 83.75 84.66 79.78 85.52 84.26 

PAB 85.61 86.73 83.70 85.18 78.81 83.10 83.86 

PCP 89.67 87.57 87.57 86.40 84.56 86.11 86.98 

R101 

NONE 88.89 84.30 87.28 84.86 81.57 81.40 84.72 

CBAM 89.12 87.00 87.66 85.93 81.42 82.09 85.50 

BAM 89.24 87.23 87.78 86.14 81.59 82.48 85.74 

DANet 89.66 87.18 88.03 86.78 82.31 83.11 86.18 

CAB 88.94 87.33 86.46 87.09 81.20 84.77 85.97 

PAB 89.08 86.96 88.36 85.92 81.27 82.32 85.65 

PCP 90.21 87.58 86.10 86.57 83.84 84.83 86.52 

Libra Faster R-CNN 

R50 

NONE 88.49 89.05 76.72 81.51 75.37 83.16 82.38 

CBAM 88.22 86.92 80.21 84.33 77.45 82.52 83.28 

BAM 88.37 86.93 80.85 84.68 77.62 82.33 83.46 

DANet 88.46 87.01 81.33 84.78 78.54 82.86 83.83 

CAB 87.77 85.71 83.99 84.27 81.62 82.62 84.33 

PAB 88.57 87.06 83.17 85.65 78.59 81.52 84.09 

PCP 88.18 87.25 83.62 85.58 79.07 83.94 84.61 

R101 

NONE 85.96 86.71 85.25 86.40 80.92 85.87 85.18 

CBAM 87.56 88.38 86.22 85.86 81.04 83.96 85.50 

BAM 87.81 88.23 86.59 85.92 81.28 84.14 85.66 

DANet 88.42 88.46 86.92 86.11 82.16 84.39 86.08 

CAB 89.08 88.37 86.01 86.62 83.05 83.81 86.16 

PAB 89.94 88.58 86.39 85.48 80.40 84.86 85.94 

PCP 89.05 88.10 87.55 86.71 81.80 84.93 86.36 

Note: R50 represents ResNet50, R101 represents ResNet101, and bold indicates the corresponding optimal value.  NONE means do not add attention information, 

CBAM denotes Convolutional Block Attention Module, SCSE denotes Spatial-Channel Squeeze & Excitation, DANet represents Dual Attention Network, CAB means 

Channel Attention Block, PAB means Position Attention Block, PCP means Parallel Channel Position, and mAP denotes mean Average Precision.     
 

Effectiveness of Different Attention Blocks: To explore the 

effect of proposed attention blocks, the performance of adding 

different attention blocks into FPN for pig face posture detection 

was further investigated.  From Table 3, it can be seen that the 

attention-based models all outperform the models without attention 

blocks, and the CAB block performs slightly better than PAB 

blocks\ in the mAP metric.  Using Cascade R-CNN as the task 

network, when using ResNet50 and ResNet101 as backbone 

networks, the model with CAB block improves the mAP metric 

over the PAB by 0.4% and 0.32%, respectively.  For L-L and U-L 

face pose categories, with Cascade R-CNN-R101 as the baseline, 

compared to the PAB, adding the CAB block improves the AP 

metric by 1.17% and 2.45%, respectively.  The main reason is that 

the CAB block assigns more weights to the channels that favor the 

facial posture category.  Channel attention pays more attention to 

the “what” of the given input image, and at the same time can 

encode the correlation of channels, which further helps to improve 

the prediction accuracy of the pose category corresponding to the 

detection box.  Different from channel attention, position attention 

is more focused on the acquisition of “were” information, which 
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can improve the fineness of bounding box location detection.  The 

reason why CAB is better than PAB is that CAB focuses on the 

category corresponding to the detection box, while PAB pays more 

attention to the position accuracy of the detection box.  The boost 

in position only makes sense if the detection box category is correct.  

The performance can be further improved by integrating CAB and 

PAB in parallel.  This demonstrates that the PAB block and CAB 

block can achieve complementary effects while capturing 

long-range dependencies in channel and position dimensions, 

thereby improving location detection accuracy while improving 

detection box categories. 

3.2.2  Compare with different attention blocks in true positive 

values 

It can be seen from Section 3.1.2 that the evaluation index AP 

is affected by the true positive value.  ResNet50 and ResNet101 

were used as backbone networks to count the true positive values 

on the Faster R-CNN and Cascade R-CNN task networks with 

different attention blocks, corresponding to the results shown in 

Figure 8.  In order to obtain the true positive and false positive 

values in Equation (8), a total of three steps are performed: 1) 

First, filter the detection boxes at a certain position, remove the 

boxes whose confidence is less than a specified threshold, and 

remove the boxes whose predicted category is inconsistent with 

the real category; 2) Then sort the filtered prediction boxes in 

descending order according to the confidence score, and calculate 

the IOU value of the box with the highest confidence and the real 

box.  If the IOU value is greater than the specified threshold, 

true positive values are added, and the mark of the real box is 

detected.  3) Add the remaining prediction boxes to the list of 

false positives. 

 
a. D-O (base-400) b. D-L (base-900) c. L-O (base-600) 

 
d. L-L (base-1200) e. U-O (base-290) f. U-L (base-400) 

 

Note: The subgraph title base-i means that i is the base true positive value, and the true value of the corresponding subgraph true positive needs to be plus i. 

F-50 represents Faster R-CNN with ResNet50, and C-50 represents the Cascade R-CNN with ResNet50 backbone network. 
Figure 8  TP values predicted by Faster R-CNN and Cascade R-CNN with different attention blocks for six facial postures 

 

True Positive Values of Different Attention Blocks: For the 

coverage area of the radar map, the largest area (shaded blue) can 

be covered with the PCP block.  Under the same conditions, the 

true positive values based on the attention block significantly 

outperform the model without adding attention information.  As 

for the L-L face posture category, when selecting Faster R-CNN as 

the task network, and ResNet101 as the backbone network, it can 

be observed that attention-based models are significantly better 

than the model without adding attention blocks, and the true 

positive values after adding CAB, PAB and PCP attention reach 

115,106, and 142, respectively, compared with no attention added, 

the increased is 72, 63, and 99, respectively.  For different 

attention blocks, CAB blocks slightly outperform PAB blocks.  

Taking the L-O face posture as an example, compared with the 

baseline model Faster R-CNN with ResNet50 backbone, the true 

positive value of adding the CAB block is 28, which is slightly 

higher than after adding PAB attention.  When the channel and 

position blocks are paralleled together, the true positive values 

achieve 72, which further significantly improves the performance.  

Therefore, it is important to fuse the channel and position attention 

information at the same time.  Because the two can complement 

each other, make up for each other’s shortcomings, and strengthen 

the model’s representation capabilities.     

3.3  Detection performance of different backbone networks 

and task networks with different attention modules 

Given an input image, channel and position attention are used 

to focus on the “what” and “where” information, respectively, to 

enhance or suppress feature map information.  To efficiently 

combine the two types of attention blocks, attention blocks can be 

assembled in a parallel or serial manner.  a series of attention 

modules were conducted, such as CCP, CPC, and PCP, to explore 

the best combination of the two types of attention information.  

Table 4 lists the experimental results under the condition that the 

backbone networks are ResNet50 and ResNet101, and the task 

networks are Faster R-CNN, Cascade R-CNN, and Libra Faster 

R-CNN. 

Effectiveness of Different Attention Modules: The parallel 

combination is better than the cascade combination method.  
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Taking R50 as the backbone network and Cascade R-CNN as the 

task network as an example (simplified to Cascade R-CNN-R50), 

compared with CCP and CPC, using PCP always achieves the best 

performance.  Specifically, PCP achieves 2.81% and 2.93% 

improvements in mAP metrics, respectively.  More importantly, 

for a specific facial posture category, the PCP-based Cascade 

R-CNN-R50 is able to achieve 89.67%, 87.57%, 87.57%, 86.40%, 

84.56%, and 86.11% AP on the D-O, D-L, L-O, L-L, U-O, U-L, 

respectively, which is higher 2.52%, 1.91%, 3.41%, 2.01%, 4.81%, 

2.2% AP than CCP-based Cascade R-CNN respectively.  it was 

argued that the main reason is that it is easier to supplement the 

channel and position attention information in the parallel method, 

and the knowledge of the two dimensions extracted by the two 

branches will not interfere with each other during the feature 

extraction process but can complement each other during feature 

fusion.  However, for the cascade manner, whether it is CCP or 

CPC, the information extracted by the attention of the previous 

stage is bound to affect the next stage.  Taking the CCP module as 

an example, if there is a deviation in the channel attention 

information, further extracting the position attention based on the 

deviation information will definitely increase the deviation gap.  

For the combination of attendance information, for the Faster 

R-CNN model, it is more efficient to perform position attention 

first and then channel attention.  On the contrary, when selecting 

the Cascade R-CNN and Libra Faster R-CNN as the task networks, 

first perform the channel attention outperforms the position 

attention.  The reason may be that channel attention pays more 

attention to the category information of the detection box, and 

position attention can be used for improving the positioning 

accuracy of the box.  For the calculation of the AP metric, the 

category accuracy takes precedence over the position accuracy, and 

it only makes sense to discuss the position accuracy when the 

category of the detection box is correct.  So overall, the first use 

the channel attention outperforms the first use the position attention. 
 

Table 4  Different task networks’ performance under different attention modules 

Model Backbone Attention D-O D-L L-O L-L U-O U-L mAP 

Faster R-CNN 

R50 

CCP 84.06 84.80 80.07 81.91 78.09 81.23 81.69 

CPC 87.34 82.99 80.60 82.00 79.88 81.10 82.32 

PCP 86.6 86.98 86.26 86.67 83.03 86.28 85.97 

R101 

CCP 90.32 89.19 87.38 87.31 83.81 85.00 87.17 

CPC 91.20 89.34 87.82 86.98 83.55 85.36 87.38 

PCP 91.55 90.36 90.10 90.05 85.96 87.92 89.32 

Cascade R-CNN 

R50 

CCP 87.15 85.66 84.16 84.39 79.75 83.91 84.17 

CPC 87.47 84.57 84.28 83.65 81.05 83.31 84.05 

PCP 89.67 87.57 87.57 86.40 84.56 86.11 86.98 

R101 

CCP 90.30 87.48 86.21 86.82 81.40 83.41 85.94 

CPC 89.61 87.11 85.36 86.74 81.92 84.30 85.84 

PCP 90.21 87.58 86.10 86.57 83.84 84.83 86.52 

Libra Faster R-CNN 

R50 

CCP 88.76 86.77 85.44 82.98 78.49 80.56 83.83 

CPC 88.76 86.05 85.60 83.13 79.71 79.07 83.72 

PCP 88.18 87.25 83.62 85.58 79.07 83.94 84.61 

R101 

CCP 89.19 88.77 85.53 85.88 80.95 85.15 85.91 

CPC 88.11 87.15 86.21 85.74 81.10 86.15 85.80 

PCP 89.05 88.10 87.55 86.71 81.80 84.93 86.36 

Note: CCP: Cascade Channel Position attention module; CPC: Cascade Position Channel attention module. 
 

4  Visualization 

4.1  Visualization of heatmaps before and after adding PCP 

module 

In order to understand the proposed PCP module more 

intuitively, with Faster R-CNN-R101 as an experimental model, 

the heatmaps of different stages before and after adding PCP 

module to FPN are visualized in Figure 9.  For each input image, 

three channels were selected randomly for visualization.  For the 

lower feature in the FPN structure (the bottom-up path in Figure 4), 

C2, C3, and C4 were chosen for visualization, after adding the PCP 

module, the corresponding results are C2-PCP, C3-PCP, C4-PCP, 

the corresponding visualization results are shown in Figure 9a.  

For higher feature (the top-down pathway in Figure 4), in order to 

ensure the same size as the corresponding lower dimensional 

feature maps, the output of M5, M4, and M3 was upsampled for 

visualization, denoting as U-M5, U-M4, and U-M3 The 

visualization results after adding the PCP module are marked as 

U-M5-PCP, U-M4-PCP, and U-M3-PCP, respectively, and the 

results are shown in Figure 9b. 

For lower-feature heatmaps: In Figure 9a, for each input image, 

three of the channels (marked as #114 for C4, #138 for C3, and 

#252 for C2) were selected to display their corresponding heatmaps.  

It can be observed that although the task of this study was pig face 

pose detection, the lower-level heatmaps place more emphasis on 

the global body information of pigs.  For different levels of the 

bottom-up path in FPN, from C2 to C4, the acquired heatmaps are 

gradually abstracted while paying more attention to detail.  For 

example, the heatmap at stage C2 gives higher heat to the body part 

of the pig, while the heatmap at stage C4 puts more emphasis on 

the area of the hooves or ears.  Compared with the non-PCP 

module, adopting the PCP module enables the aggregation of 

denser and richer contextual information in bottom-up paths at 

different levels.  Especially, for C4 and C4-PCP, the PCP module 

strengthens the distinction between pig body and non-pig body 

parts while highlighting areas with rich biological information, 

such as hooves, thereby improving the accuracy of related tasks. 

For higher-feature heatmaps: In order to visualize the heatmap 

of high-level features in FPN before and after adding the PCP 

module.  Three channels were chosen in the top-down path of the 

FPN structure, marked as #58 for U-M5, #117 for U-M4, and #212 

for U-M3.  It could be observed that, compared with the heatmap 

of low-level features, the high-level features pay more attention to 

the areas related to the pig face, especially for the U-M5 and U-M4.  

The PCP module can capture clear semantic similarities and 

long-range distance relationships.  For example, for the level of 



232   November, 2022                       Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                        Vol. 15 No. 6 

U-M5, after the introduction of the PCP module, although the faces 

of different individuals are located in different positions of the 

image, the heatmaps can still be able to highlight most of the areas 

where the pig’s face is.  For the U-M5 and U-M4, the facial area 

information is particularly significant, and the number of faces can 

be clearly counted, which is also helpful for the task of counting 

group-housed pigs.  Although some pigs are smaller (such as the 

second row of Figure 9b) or far away from the camera (such as the 

third row of Figure 9b), the PCP-based FPN is still able to detect 

the corresponding pig’s face area.  It should be noted that it was 

could not distinguish different face posture categories from the 

heatmaps obtained by FPN, the introduction of the PCP module can 

effectively filter the face area, and for the category of the face 

posture, it is left to the subsequent head network module (as show 

the Hi in Figure 3).  In addition, after the introduction of the PCP 

module, there are great differences in the pig’s face area concerned 

by different channels.  Specifically, the U-M5-PCP pays more 

attention to the pig’s nose position, while U-M4-PCP focuses on 

the pig’s ear area.  The position of the pig’s nose is the basis for 

judging the upward, level, and downward postures, while the ear 

area is the basis for judging the posture of the lateral and head-on.  

In short, the facial semantic responses of pigs are significantly 

enhanced after adding the PCP module, and these visualizations 

further demonstrate the necessity of capturing long-range 

dependencies to improve feature representation for facial posture 

detection. 

 
a. Visualization of FPN lower-level heatmaps before and after adding PCP module 

 
b. Visualization of FPN higher-level heatmaps before and after adding PCP module 

Note: Raw represents the input image; C4, C3, and C2 represent the different stages of the bottom-up pathway in Figure 4.  C4-PCP, C3-PCP, and C2-PCP indicate 

the heatmaps after adding the PCP module to C4, C3, and C2.  U-M5, U-M4, and U-M3 represent the different stages of the top-down pathway in Figure 4 after 

the applied upsample operation.  U-M5-PCP, U-M4-PCP, and U-M3-PCP indicate the heatmaps after adding the PCP module to U-M5, U-M4, and U-M3. 

Figure 9  Visualization of FPN heatmaps before and after adding PCP module 
 

4.2  Visualization of predictions for different ages and scenarios 

To further verify the effectiveness of different attention blocks 

or modules.  Faster R-CNN-R101 was used as the experimental 

model.  The test set is divided into different test subsets from 

different angles, and the main criteria for the division are the age of 

the pigs, the degree of adhesion between pigs, and the light 

intensity of the pigpen.  For different stages of age, four pigpens 

in different age stages were selected as study subjects and 

visualized the facial posture detection results in Figure 10a.  

According to the degree of adhesion of the pigs, the pigs were 

divided into deep separation and high adhesion, and selected two 

samples to visualize the results.  The corresponding results are 

shown in the first and second rows of Figure 10b.  For the light 

intensity of the pigpen, it was divided into two scenarios in this 

study: dim light and strong light, and selected two samples to 

visualize the results as shown in the third and fourth rows of Figure 

10b. 

Qualitative Evaluation: 1) After adding attention information,  

it can improve the prediction confidence and position detection 

accuracy for pigs of different ages and life scenarios; 2) CPC and 

PCP can be used to improve the correct facial position detection 

but face posture category incorrect situation.  For example, for the 

pigpen #1 number ②, the PAB and CCP modules predict its 

corresponding category as L-L, but the actual category is D-L, and 

the CPC and PCP modules can correctly predict it; 3) For facial 

areas that are far away from the camera or only partially visible, 

such as the pigpen #2 number ① and pigpen #3 number ① and ②, 

although the PCP module has lower confidence in the prediction of 

these face areas, at least facial posture can be detected correctly.  

4) For the high adhesion scenario (the second row of Figure 10b 

numbered ①), due to the influence of the debris information, the 

pig face information cannot be detected for the model without 

attention blocks or modules.  The CAB block can only detect the 

pig area, but the prediction of its category is wrong.  CPC and 

PCP can eliminate redundant category box information and retain 

the category with higher confidence and position accuracy.  At the 
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same time, compared with CPC, the PCP module has higher 

confidence in the prediction of the face position, and the detection 

box is also more accurate.  5) For the strong light scenario 

(numbered ① in the last row of Figure 10b), the face area of the 

sow was not manually annotated, but the modules CCP, CPC, and 

PCP which simultaneously introduce channel and position attention 

information can further detect the corresponding areas, and the PCP 

can achieve the highest confidence.  This indicates that the two 

kinds of attention information are fused at the same time, which 

helps to assist in labeling pig face posture detection data. 

 
a. Different stage of age 

 
b. Different degree of adhesion and light intensity 

Note: Identify the different areas of attention prediction by input image number ①~⑤.  Ground-truth represents the results of manual labeling.  NONE represents the 

Faster R-CNN-R101 model that predicts results without any attention to information.  CAB, PAB, CCP, CPC, and PCP represent the result of Faster R-CNN-R101 with 

channel attention block, position attention block, cascade channel position module, cascade position channel module, and parallel channel position module, respectively. 

Figure 10 Visualization of predictions for different ages and scenarios 
 

5  Conclusions 

A feature pyramid network was proposed that simultaneously 

fuses channel and position attention information for pig face 

posture detection, adaptively capturing channel dependencies and 

the pixel-level long-range relationship in a parallel manner.  First, 

we explore the performance of different models under the 

combination of three task networks and two backbone networks.  

Next, channel and position attention blocks are constructed to 

explicitly encode the interdependencies between channels and 

locations.  Ablation experiments show that the position attention 

block is slightly inferior to the channel attention block.  

Furthermore, in this study, multiple ways were explored to 

effectively combine the two types of attention mechanisms, 

demonstrating that parallel permutations can provide better 

performance than the cascade manner.  Subsequently, the 

heatmaps at different levels were visualized before and after adding 

the PCP module in the FPN to verify the proposed PCP module 

enhances the feature representation.  Finally, the prediction results 

for different stages of age were visualized, and different degrees of 

adhesion, and light intensity, confirmed that the PCP module is the 

most robust.  
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